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Abstract—KinectFusion is a method for real-time capture of ~datasets. In particular, we focus on capturing 3D datasets,
dense 3D geometry of the physical environment using a depth ysing a commercially available Microsoft Kineetamera
sensor. The system allows capture of a large dataset of 3D (oost 100e) and previously published 3D reconstruction
scene reconstructions at very low cost. In this paper we discuss . . . .
the properties of the generated data and evaluate in which sys.tem Ca,"eq K|r.1ectFu5|on [,1]3 [2]. To this 9”0" we obta!ned
situations the method is accurate enough to provide ground a blnal’y dlStI’IbUtIOﬂ Of the Ong'nal authOI’S' |mp|ementat|0n
truth models for low-level image processing tasks like stereo As discussed later, this type of rich 3D data can be used for
and optical ow estimation. The results suggest that the method g variety of vision-based algorithms, both as training and
is suitable for the fast acquisition of medium scale scenes (a ground truth test data.

few meters across), lling a gap between structured light and I - .
LiDAR scanners. For these scenes e.g. ground truth optical We offer three .Contrlbutlons. F'rSt{ we analyze the quality
ow elds with accuracies of approximately 0.1 pixel can be Of the KinectFusion 3D reconstruction method for data set
created. We reveal an initial, high-quality dataset consisting of capture and compare it to high-end ground truth generation
57 scenes which can be used by researchers today, as well agechniques such as light detection and ranging (LIDAR)
a new, interactive tool implementing the KinectFusion method. anq discuss under which circumstances the recorded data
Such datasets can then also be used as training data, e.g. for. ¢ h to b led d truth trai
3D recognition and depth inpainting. is accurate enough to be called ground truth or train-
ing data. Second, we offer an example set of 57 scenes
|. INTRODUCTION AND RELATED WORK for public download as 3D meshes, volumetric data, and
. . registered raw andsynthetic depth maps, recorded in a
Ground truth acquisition for performance analysis of low- _~. . . .
variety of rooms, enabling researchers to train algorithms

level computer vision tasks such as optical ow or stere?g{ 3D vision tasks such as object detection or depth

is mainly constrained by three properties: accuracy, cost an bainting. Third, we provide a new publicly available,

content. Accuracy and content are limited by CO.StS stgmmlg teractive tool which extends KinectFusion for record-
from manual labor as well as measurement device prices. For . :
. . ing sequences and exporting 3D meshes, enabling ev-
example, highly accurate structured light 3D scanners are d hi d esto://hoi.i
very expensive (often more than 50ke), labor-intensive eryone fo record his own datas R:/Ihi.wr.
(setup time, manual registration ste s, ostprocessin %?l-heldelberg.de/Benchmarks/ )
P ' 9 pS, posip 9 %\ve now review the different methods employed for cre-

%Eﬁg?u&ngcglned (alr;)Ofetﬁ\?irgr?Jr[Ln;:wztid for smalk( 1m) to ating training/evaluation datasets for low-level vision prob-
' Ifems. A straightforward way to generate training data is

Computer vision algorithms have to deal with a number. Ovir’:\ Computer Graphics [3]. Early approaches for generat-
competing requirements such as speed, accuracy and re"aFHg evaluation datasets for problems such as optical ow

ity. In real-world applications such as robotics, speed and resed short< 14 frames) rendered sequences [4], [5], [6].

liability in hugely varying environments are most |mportant.AIthough generation of synthetic images is easy, we need

Practitioners usually cannot rely on existing benchmark o make sure that the resulting dataset represents the data

Thgy negd tﬁ ctreatet Igrgetﬂmountsi' oft.group: truth qu'Ck\tnat the trained system will observe in the real world. This
and speci cally targeted on their application. The accuracy ok, extremely challenging problem and raises the question

such a ground truth dataset needs to be one magnitude Iarg Whether synthetic data can and should be used at all for
:E{:m the a%curacy fff the method EP be evaluated. (Ij—k:nc erformance analysis [7]. In contrast, the rst well-known
IS paper does not focus on creating a néw ground tru mple using real data for evaluating vision algorithms is

?atase’glwe examine :he acctjraﬁ.y of a fast ar;q Cth eap met.im marbled block sequence [8]. Both types of sequences are
0 enhable everyone 1o create nis own, application-speci Surrently very limited in their number and do not represent

IHeidelberg  Collaboratory ~ for  Image  Processing, uni-SPect € application scenarios. .
versity of Heidelboerg and Intel Visual Computing Insttute More recently, several real and synthetic datasets for

(|\/ZC|)stephan.meister@iwr.gni-heidelberg.de_ stereo-based depth and optical ow estimation have been
%:ggzgg ResearCh'Ffeas”;;’:('ige' Upkohhc@anr;g:rirgggft.com published on the Middlebury benchmark website [9]. There,
shahrami@microsoft.com ' " the authors also encourage the publication of results obtained
4LIDAR Research Group - GlScience; Institute of Geography,Universitwvith this data. While the accuracy of the ground truth data in

of Heidelberg M.Haemmerle@stud.uni-heidelberg.de this benchmark is very high (about 1/60 pixel), its creation

5Microsoft Research, Cambridge, Ukarrot@microsoft.com labor-i . I hasis i
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K exported mesh in a common format that can be used in 3D
. modeling applications such as Meshiab
To deal with large scale capture of 3D datasets, we have
[ created a simple data recorder and player which is made
available as download. The application works as follows:
. We rst capture the 3D scene using a process similar to
\ Y | the standard KinectFusion reconstruction process. Once the
user has achieved a high quality of reconstruction the ap-
plication saves the voxel volume and marching cubes mesh.
' A synchronized sequence of raw depth maps, synthetically
‘ 4 generated depth maps (via raycasting) and 6 degrees-of-
freedom camera poses (containing a 3x3 rotation and 3x1
Fig. 1. Some representative rendered depth maps obtained from the $fgnslation vector) are then written to disk.
model generated using KinectFusion.These images give a general impressionifo test the effectiveness of the KinectFusion approach,
about the scenes in the dataset we collected a dataset comprising each depth and color
sequences in a variety of different locations such as of ces,

For the creation of ground truth depth maps from mulliving rooms, kitchens, bedrooms, study rooms etc. Repre-
tiple views, usually photogrammetric techniques of highepentative examples of all the sequences are shown in Figure
accuracy such as LIDAR and high-precision structured light- During acquisition we explicitly avoided moving objects
scanning methods are employed. Well-known datasets ha@e People in the depth maps. 55 sequences consist of 900
e.g. been published in [10]. frames each; two have 500 frames.

Finally, in cases where ground truth is far too expensive The entirety of these datasets, consisting of 3D meshes,
or dif cult to obtain, reference datasets containing dif cult Voxel volumes, synthetic and raw depth maps, RGB images
scenes can be recorded. The authors of such datasets ass@fneell as camera poses (location + orientation) can be used
that experts are able to qualitatively evaluate the results. F& various vision-based tasks: First of all, the 3D models
automotive scenarios, three large representative datasets h&i@ known accuracy can be used to evaluate other recon-
been published, two of them with partial ground truth [11]struction algorithms such as multiple view techniques based
[12] and one without [13]. on color images. The high quality synthetic and raw depth

Our approach is closely related to multi-view 3D re-maps can be compared, e.g. to evaluate denoising as well as
construction. The fundamental difference to these previoepth inpainting algorithms. Together with the acquired RGB
approaches is that we want to enable everyone to credfdormation and camera poses, each real color image can be
large sets of 3Dsurfacereconstructions imreal-time with ~ augmented with synthetic depth ground truth. With each two
the KinectFusion system, using a low cost Kinect senséif such color-depth-pairs and based on the known camera
as capturing device. (An evaluation of the Kinect sensdfansformation, optical ow elds (as dened in [9]) can
accuracy itself has been performed by [14].) be generated by projecting the resulting 3D motion vectors

into image space. Furthermore, to circumvent the limited

Il. CAPTURING 3D MODELS WITH KINECTFUSION accuracy of any real measurement device, fully synthetic

In the KinectFusion system [2] depth data from a consequences with ground truth can be rendered for scenes
sumer Kinect depth camera (and possibly other depth camtilizing the known, realistic geometrical complexity. In this
eras) is integrated into a regular voxel grid structure storesbntext, experiments with different lighting and materials can
on the graphics card (GPU) to produce a 3D volumetric rebe carried out. All of these various datasets can also be used
construction of the scene. Surface data is encaabgdicitly  in machine learning based approaches to train a system to
into voxels as signed distances, truncated to a prede nefitomatically enhance depth data or 3D models based on
region around the surface, with new values integrated usirgpplication-speci ¢ knowledge.

a weighted running average. The global pose of the moving In the following Section we compare a few test datasets

depth camera is predicted using a point-plane iterative closast high-accuracy, high-cost scans to evaluate the absolute
point (ICP) algorithm while drift is mitigated by aligning quality of this dataset, with special emphasis being put on

the current raw depth map with the accumulated model. Fatie geometric accuracies.

evaluation, we obtained a binary distribution of the original

authors' implementation. As an extension of our system we I1l. QUALITY ANALYSIS

have added capabilities to extract a geometric isosurfaceTq analyze the accuracy of the KinectFusion method in

from the volumetric data using a GPU-based implementatiafifferent scales we created three test scenes with highly
of the marching cubes algorithm [15]. For each voxel, thgccurate ground truth. (In this section, we use the term

signed distance value at its eight corners is computed. Theound truthfor the expensive, slow 3D scan with accuracies

algorithm uses these computed signed distances as a lookyigically at least one order of magnitude higher than the
(into a table stored as a 1D texture on the GPU) to produce

the correct polygon at the specic voxel. This results in an Meshlab softwarehttp://meshlab.sourceforge.net/

I ' .



Fig. 2. Photos of the three test scenes: statue, targetbox and of ce.

kinect.) Although the KinectFusion system is able to work
with different depth data sources, we limited the experiments
to the original Kinect sensor.

For each scene we aligned the mesh generated by Kinect-
Fusion to the ground truth data using a standard ICP im-
plementation (Meshlab). We then computed several error |
measures to quantify the differences between the datasets:
First, for each vertex of the KinectFusion generated point
cloud we computed the minimal distance to the next face
of the ground truth mesh. (In the case of the of ce point
cloud scene where no mesh was available we computed the
distance to the KinectFusion mesh for each 3D point in the
ground truth.) We call this thper vertex euclidean error  rig. 3. Left: ground truth renderings. Right: mesh generated by Kinect-

Second, for each vertex of the KinectFusion point cloudusion.
we calculated the difference between its normal and the

normal of the closest vertex in the ground truth point cloud. . 3
This we call theper vertex angle errorwhich is more MPlicit voxel volume to be as small as possib(@:6m)

sensitive to corners and depth discontinuities and allow/g this case). Th; resolution ,(5123 ravoxels is close to
evaluation of sections which are critical to some imagd'® maximum g0C) our graphic ca C_OU|d handle and
processing algorithms. accounts for voxel side lengths of 1:6mm. (Memory

If not mentioned otherwise, the values in all images argequirements do scale with the third power of the volume

linearly scaled according to the displayed colorbar. Minit€Solution). The camera/object distance was approximately

mum(blue) and maximum(red) are each mentioned in thi Meter in this case.
gure captions. Figure 3 shows that the general shape of the statue could

Statue Scene:Most depth cameras and 3D scanners ha\}ée retrieved by KinectFusion but ner surface detail is
optics with a xed focal length as well as a minimal and'OSt' The. histogram in Fig_ure 4 shows that at least half
maximal acquisition depth. This is a limiting factor for of all estimated surface points are closer thann® to the

the size and resolution of the scenes or objects one warfrrect value. Additional 75% of all points have an error
to scan using these devices. The rst scene is composegi@/ler than 1mm. Hence, the system can be used for tasks
of an approximately 40cm high wooden statue. Our ainhere 1nm resolution in the absolute world coordinates
with this statue is to evaluate the lower limit of resolutionS Sufcient. The error of the surface normals is widely
KinectFusion can provide (cf. Figures 2, 3). Ground truth foplstrlbuted, mainly due to.concave sections such as thg folds
this scene was generated by scanning the statue with a highthe garment. From this result we conclude that highly
precision structured light-scanfier curved and concave details below the scale of aroumaniO

To achieve maximum KinectFusion accuracy, we chose ttf@not be resolved well with the current Kinect system,

although the voxels are small enough.

2Breuckmann smartSCAN-HE, resolution of down to 10 microns depend-
ing on eld of view Snvidia GTX 480 with 1.5 GB Ram
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Fig. 4. Statue. euclidean error (@a8, > 8mm is gray), histogram of Fig. 5. Targetbox: euclidean error (0+b&, higher errors in gray),
euclidean error. histogram of euclidean errors.

Targetbox Scene:The second test object is a target boxdescribed in Section Il. Ground truth data was acquired
especially designed for the evaluation of depth cameras. gy terrestrial LIDAR using a Riegl VZ-400 time-of- ight
is 1 x 1 x 0.5 meter in size and contains several geometriganner. Its accuracy is stated wiimm. The manufacturer
objects made of styrofoam, as well as many regions witglso documents a precision &hm. Inside the of ce overall
slanted surfaces, curvature or sharp 90 degree corners whigh scan positions were necessary for a suf cient coverage.

are typically problematic for any depth acquisition systemrhis equals to about one day of labor for acquisition and
Therefore, we manually measured the box with an accuragstprocessing.

higher thanlmm. In order to t the whole room into th&12-voxel volume
Fitting the box size, we set the implicit voxel volume towe had to choose a voxel side length of aboutl37mm
(1:6m)* with 600° voxels, yielding a voxel side length of while keeping a scan distance of 1 to 2 meters. This means
2:7mm. We only scanned the interior of the box andthat the actual accuracy of the Kinect system of about
therefore ignore its outside in the evaluation, visualized i8-10mm can no longer be fully exploited. Given current
gray as can be seen in Figure 5 (scan distance was again gaphics hardware, the of ce scene represents the maximum
1 meter). size which can be scanned by the KinectFusion system.

Angle errors> 90 are mostly caused by vertices whose |CP alignment of the KinectFusion mesh and the ground
nearest neighbor was matched to one vertex on the other siggth mesh are here not perfectly accurate as a small scaling
of the surface (e.g. the inside and outside walls). Such errogfong the object axes was necessary. This is caused by
should be either ignored or handled as if they were ipped byhree reasons: rst, the scene is heavily cluttered containing
180 (marked gray in Figure 5). Generally, surfaces whichnany regions were any 3D scanning devices fails. Second,
are ator have high curvature radii (like the styrofoam sphergne increased voxel sizes create a coarser mesh which is
or cylinder) are reconstructed well with minimal angularmore dif cult to align to the LIDAR results. Third, the
error. Sharp corners on the other hand are partly smoothefbAR scan itself is more inaccurate in regions with small
out. We found slightly higher histogram densities #6  scale detail and contains some holes and regions of low
angle errors which suggests that for a sh@®pedge at least point cloud density. The euclidean error is therefore about
one additional face witl5 is generated by the marching pne magnitude larger than for the other scenes. Yet, most
cubes algorithm. The euclidean errors are generally low aRgrtices with errorss 100mm are actually on the outside of
in the same range (5-in) as in the previous statue scenethe room as the marching cubes algorithm produces walls
Only the higher error on the styrofoam sphere suggests thghich are not at faces but have a certain volume. As
the algorithm underestimates the volume of curved regionsigure 6 shows, the error is well beloBOmm for most
We can conclude that the voxel size of 27mm was vertices. These high errors are caused by regions were both
suf ciently small for this experiment and that the accuracy Ofnethods fail. Future work should focus on detecting such
around10mm is also valid for such a medium scale scene.regions of low certainty in order to mask them out in the

Of ce Scene::The third scene is a small of ce room (6 x 4 resulting benchmark datasets. To get an idea of the accuracy
x 2.5m) and represents one additional example of the datasatmore con dent regions, a robust statistical measure such
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Fig. 6. Ofce: euclidean error (0-160m, higher errors are also red),
euclidean error(0-5@m, higher errors are transparent), histogram of eu-
clidean error.

as the median error can be used whose value is just below
three voxel sizes36mm). This indicates that even if the
number of voxels were increased, the measurement volume
of the current KinectFusion system (using Kinect depths as
input) should not be much larger thax7x7m to achieve
maximum accuracy. Yet, more accurate depth sensors and
larger amounts of graphics card memory might soon alleviate
this limit. For now we conclude that very careful acquisition
of all concave regions in the of ce is very challenging with
both 3D scanning methods.

A. Ground Truth Accuracy for Optical Flow and Stereo

In optical ow, real frames at two successive time steps of
a video can be augmented with synthetic depth maps based
on known camera poses. As our KinectFusion scenes are
static, the depth maps can be reprojected to ow elds using
the camera transformation between both views. Although op-
tical ow is only induced by camera movement, challenging
ow elds can be created (similar to the yosemite, grove
and urban scenes in [9]). For stereo, the second color image
should be aligned with respect to the epipoles. In order to use
real color images, for a given single view, a nearby view can
be found which is then recti ed based on the known camergig. 7. Left: rendering with optical ow as hsv color overlay; Middle:

; ; é}gtical ow endpoint error (0-0.2 pixel, higher errors are white) between
poSes and prewously measured internal camera paramet ground truth and KinectFusion based scene; Right: stereo disparity error

In realtime _CompUter ViSion_ app_licatiorjs a suf _Cient_ aC~(0-1 pixel, higher errors are white) between ground truth and KinectFusion
curacy often is about one pixel in motion or disparitiesbased scene.

Hence, to achieve ground truth quality, the KinectFusion

system should record data which is one order of magnitude

more accurate. We synthesized a stereo disparity map and | ) i ,

an optical ow eld from two virtual views of the targetbox 0-2° Pixel with a median of0:11 pixel.

scene (camera distancel:3m, eld of view 40 , maximum We conclude that KinectFusion based geometry data can
ow magnitude 25 pixel). We then compared the ows andindeed be used to generate ground truth optical ow and
disparities for both the high-accuracy scans as well as ttstereo information in case the application requires accuracies
KinectFusion scans. Figure 7 shows the per pixel endpoiimt the order of magnitude of around one pixel. Optical
error, a widely used error measure for optical ow evaluatiorFlow evaluation is hereby limited to static scenes but still
[9]. The mean endpoint error for this scene w86 pixel useful e.g. for simultaneous location and mapping (SLAM)
with a median 0f0:02 pixel. Most errors occurred on depth problems. With these results, we would like to encourage
discontinuities. To evaluate stereo disparity accuracies wmactitioners to create their own ground truth datasets with
transformed the depths to disparity values (focal length 11Gbntent speci cally designed to sample the space of chal-
pixel, 7:5cm eye separation). The mean disparity error wakenges within a given application.



IV. CONCLUSION AND FUTURE RESEARCH Heidelberg) for carrying out the structured light scans and for

We have compared 3D reconstructions produced by ttpglditional advice. We also thank Markus Forbriger, Larissa
KinectFusion algorithm with ground truth data obtained/tller and Fabian Sdhit of the LIDAR Research Group

from high-precision 3D scanners. The Kinect sensor hagniversity of Heidelberg) for their help in acquiring the

several advantages over such systems: The setup is fast-42AR scans.

no calibration is needed, scanning is fast, meshed results

are available within minutes and in contrast to LiDAR or

;tructured light scanners, no extensiye manual postprocessifg r. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,

is needed. The Kinect sensor also is also more portable and A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon,

; ilitati it “KinectFusion: Real-time dense surface mapping and tracking,” in

small c;qmpare_d to O.Iher. de\{lces’ faC|I|tat|ng the acqg|3|t|on 2011 10th IEEE International Symposium on Mixed and Augmented

of additional viewpoints in highly complex scenes. Finally,  Reaiity vol. 7, 2011, pp. 127-136.

the effective eld of measurement is quite large, closing[2] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,

the gap between portable structured light scanners which J: Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon,
. . 3 d LiDAR KlnecFFusmn : Real-time 3D Recon_structlon and Interaction Using

are _typlcally restricted to volumes (1m)* an I a Moving Depth Camera,” ifProceedings of the 24th annual ACM

equipment for larger outdoor scenes. We offer an exemplary symposium on User interface software and technglegy. UIST '11,
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