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Abstract— KinectFusion is a method for real-time capture of
dense 3D geometry of the physical environment using a depth
sensor. The system allows capture of a large dataset of 3D
scene reconstructions at very low cost. In this paper we discuss
the properties of the generated data and evaluate in which
situations the method is accurate enough to provide ground
truth models for low-level image processing tasks like stereo
and optical �ow estimation. The results suggest that the method
is suitable for the fast acquisition of medium scale scenes (a
few meters across), �lling a gap between structured light and
LiDAR scanners. For these scenes e.g. ground truth optical
�ow �elds with accuracies of approximately 0.1 pixel can be
created. We reveal an initial, high-quality dataset consisting of
57 scenes which can be used by researchers today, as well as
a new, interactive tool implementing the KinectFusion method.
Such datasets can then also be used as training data, e.g. for
3D recognition and depth inpainting.

I. I NTRODUCTION AND RELATED WORK

Ground truth acquisition for performance analysis of low-
level computer vision tasks such as optical �ow or stereo
is mainly constrained by three properties: accuracy, cost and
content. Accuracy and content are limited by costs stemming
from manual labor as well as measurement device prices. For
example, highly accurate structured light 3D scanners are
very expensive (often more than� 50ke ), labor-intensive
(setup time, manual registration steps, postprocessing of
data) and and are often optimized for small (<< 1m) to
medium scale (� 1m) environments.

Computer vision algorithms have to deal with a number of
competing requirements such as speed, accuracy and reliabil-
ity. In real-world applications such as robotics, speed and re-
liability in hugely varying environments are most important.
Practitioners usually cannot rely on existing benchmarks:
They need to create large amounts of ground truth quickly
and speci�cally targeted on their application. The accuracy of
such a ground truth dataset needs to be one magnitude larger
than the accuracy of the method to be evaluated. Hence,
this paper does not focus on creating a new ground truth
dataset; we examine the accuracy of a fast and cheap method
to enable everyone to create his own, application-speci�c
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datasets. In particular, we focus on capturing 3D datasets,
using a commercially available Microsoft KinectR camera
(cost � 100e ) and previously published 3D reconstruction
system called KinectFusion [1], [2]. To this end, we obtained
a binary distribution of the original authors' implementation.
As discussed later, this type of rich 3D data can be used for
a variety of vision-based algorithms, both as training and
ground truth test data.

We offer three contributions: First, we analyze the quality
of the KinectFusion 3D reconstruction method for data set
capture and compare it to high-end ground truth generation
techniques such as light detection and ranging (LiDAR)
and discuss under which circumstances the recorded data
is accurate enough to be called ground truth or train-
ing data. Second, we offer an example set of 57 scenes
for public download as 3D meshes, volumetric data, and
registered raw andsynthetic depth maps, recorded in a
variety of rooms, enabling researchers to train algorithms
for 3D vision tasks such as object detection or depth
inpainting. Third, we provide a new publicly available,
interactive tool which extends KinectFusion for record-
ing sequences and exporting 3D meshes, enabling ev-
eryone to record his own datasets.(http://hci.iwr.
uni-heidelberg.de/Benchmarks/ )

We now review the different methods employed for cre-
ating training/evaluation datasets for low-level vision prob-
lems. A straightforward way to generate training data is
via Computer Graphics [3]. Early approaches for generat-
ing evaluation datasets for problems such as optical �ow
used short (< 14 frames) rendered sequences [4], [5], [6].
Although generation of synthetic images is easy, we need
to make sure that the resulting dataset represents the data
that the trained system will observe in the real world. This
is an extremely challenging problem and raises the question
of whether synthetic data can and should be used at all for
performance analysis [7]. In contrast, the �rst well-known
example using real data for evaluating vision algorithms is
the marbled block sequence [8]. Both types of sequences are
currently very limited in their number and do not represent
speci�c application scenarios.

More recently, several real and synthetic datasets for
stereo-based depth and optical �ow estimation have been
published on the Middlebury benchmark website [9]. There,
the authors also encourage the publication of results obtained
with this data. While the accuracy of the ground truth data in
this benchmark is very high (about 1/60 pixel), its creation
was very labor-intensive. Generally more emphasis is put on
the sequences itself, not on the creation method.



Fig. 1. Some representative rendered depth maps obtained from the 3D
model generated using KinectFusion.These images give a general impression
about the scenes in the dataset

For the creation of ground truth depth maps from mul-
tiple views, usually photogrammetric techniques of higher
accuracy such as LiDAR and high-precision structured light
scanning methods are employed. Well-known datasets have
e.g. been published in [10].

Finally, in cases where ground truth is far too expensive
or dif�cult to obtain, reference datasets containing dif�cult
scenes can be recorded. The authors of such datasets assume
that experts are able to qualitatively evaluate the results. For
automotive scenarios, three large representative datasets have
been published, two of them with partial ground truth [11],
[12] and one without [13].

Our approach is closely related to multi-view 3D re-
construction. The fundamental difference to these previous
approaches is that we want to enable everyone to create
large sets of 3Dsurface reconstructions inreal-time with
the KinectFusion system, using a low cost Kinect sensor
as capturing device. (An evaluation of the Kinect sensor
accuracy itself has been performed by [14].)

II. CAPTURING 3D MODELS WITH K INECTFUSION

In the KinectFusion system [2] depth data from a con-
sumer Kinect depth camera (and possibly other depth cam-
eras) is integrated into a regular voxel grid structure stored
on the graphics card (GPU) to produce a 3D volumetric re-
construction of the scene. Surface data is encodedimplicitly
into voxels as signed distances, truncated to a prede�ned
region around the surface, with new values integrated using
a weighted running average. The global pose of the moving
depth camera is predicted using a point-plane iterative closest
point (ICP) algorithm while drift is mitigated by aligning
the current raw depth map with the accumulated model. For
evaluation, we obtained a binary distribution of the original
authors' implementation. As an extension of our system we
have added capabilities to extract a geometric isosurface
from the volumetric data using a GPU-based implementation
of the marching cubes algorithm [15]. For each voxel, the
signed distance value at its eight corners is computed. The
algorithm uses these computed signed distances as a lookup
(into a table stored as a 1D texture on the GPU) to produce
the correct polygon at the speci�c voxel. This results in an

exported mesh in a common format that can be used in 3D
modeling applications such as MeshLab1.

To deal with large scale capture of 3D datasets, we have
created a simple data recorder and player which is made
available as download. The application works as follows:
We �rst capture the 3D scene using a process similar to
the standard KinectFusion reconstruction process. Once the
user has achieved a high quality of reconstruction the ap-
plication saves the voxel volume and marching cubes mesh.
A synchronized sequence of raw depth maps, synthetically
generated depth maps (via raycasting) and 6 degrees-of-
freedom camera poses (containing a 3x3 rotation and 3x1
translation vector) are then written to disk.

To test the effectiveness of the KinectFusion approach,
we collected a dataset comprising each depth and color
sequences in a variety of different locations such as of�ces,
living rooms, kitchens, bedrooms, study rooms etc. Repre-
sentative examples of all the sequences are shown in Figure
II. During acquisition we explicitly avoided moving objects
or people in the depth maps. 55 sequences consist of 900
frames each; two have 500 frames.

The entirety of these datasets, consisting of 3D meshes,
voxel volumes, synthetic and raw depth maps, RGB images
as well as camera poses (location + orientation) can be used
for various vision-based tasks: First of all, the 3D models
with known accuracy can be used to evaluate other recon-
struction algorithms such as multiple view techniques based
on color images. The high quality synthetic and raw depth
maps can be compared, e.g. to evaluate denoising as well as
depth inpainting algorithms. Together with the acquired RGB
information and camera poses, each real color image can be
augmented with synthetic depth ground truth. With each two
of such color-depth-pairs and based on the known camera
transformation, optical �ow �elds (as de�ned in [9]) can
be generated by projecting the resulting 3D motion vectors
into image space. Furthermore, to circumvent the limited
accuracy of any real measurement device, fully synthetic
sequences with ground truth can be rendered for scenes
utilizing the known, realistic geometrical complexity. In this
context, experiments with different lighting and materials can
be carried out. All of these various datasets can also be used
in machine learning based approaches to train a system to
automatically enhance depth data or 3D models based on
application-speci�c knowledge.

In the following Section we compare a few test datasets
to high-accuracy, high-cost scans to evaluate the absolute
quality of this dataset, with special emphasis being put on
the geometric accuracies.

III. QUALITY ANALYSIS

To analyze the accuracy of the KinectFusion method in
different scales we created three test scenes with highly
accurate ground truth. (In this section, we use the term
ground truthfor the expensive, slow 3D scan with accuracies
typically at least one order of magnitude higher than the

1Meshlab software,http://meshlab.sourceforge.net/



Fig. 2. Photos of the three test scenes: statue, targetbox and of�ce.

kinect.) Although the KinectFusion system is able to work
with different depth data sources, we limited the experiments
to the original Kinect sensor.

For each scene we aligned the mesh generated by Kinect-
Fusion to the ground truth data using a standard ICP im-
plementation (Meshlab). We then computed several error
measures to quantify the differences between the datasets:
First, for each vertex of the KinectFusion generated point
cloud we computed the minimal distance to the next face
of the ground truth mesh. (In the case of the of�ce point
cloud scene where no mesh was available we computed the
distance to the KinectFusion mesh for each 3D point in the
ground truth.) We call this theper vertex euclidean error.

Second, for each vertex of the KinectFusion point cloud
we calculated the difference between its normal and the
normal of the closest vertex in the ground truth point cloud.
This we call theper vertex angle error, which is more
sensitive to corners and depth discontinuities and allows
evaluation of sections which are critical to some image
processing algorithms.

If not mentioned otherwise, the values in all images are
linearly scaled according to the displayed colorbar. Mini-
mum(blue) and maximum(red) are each mentioned in the
�gure captions.

Statue Scene::Most depth cameras and 3D scanners have
optics with a �xed focal length as well as a minimal and
maximal acquisition depth. This is a limiting factor for
the size and resolution of the scenes or objects one wants
to scan using these devices. The �rst scene is composed
of an approximately 40cm high wooden statue. Our aim
with this statue is to evaluate the lower limit of resolution
KinectFusion can provide (cf. Figures 2, 3). Ground truth for
this scene was generated by scanning the statue with a high
precision structured light-scanner2.

To achieve maximum KinectFusion accuracy, we chose the

2Breuckmann smartSCAN-HE, resolution of down to 10 microns depend-
ing on �eld of view

Fig. 3. Left: ground truth renderings. Right: mesh generated by Kinect-
Fusion.

implicit voxel volume to be as small as possible ((0:8m)3

in this case). The resolution of5123 voxels is close to
the maximum (6003) our graphic card3 could handle and
accounts for voxel side lengths of� 1:6mm. (Memory
requirements do scale with the third power of the volume
resolution). The camera/object distance was approximately
1 meter in this case.

Figure 3 shows that the general shape of the statue could
be retrieved by KinectFusion but �ner surface detail is
lost. The histogram in Figure 4 shows that at least half
of all estimated surface points are closer than 5mm to the
correct value. Additional 75% of all points have an error
smaller than 10mm. Hence, the system can be used for tasks
where 10mm resolution in the absolute world coordinates
is suf�cient. The error of the surface normals is widely
distributed, mainly due to concave sections such as the folds
in the garment. From this result we conclude that highly
curved and concave details below the scale of around 10mm
cannot be resolved well with the current Kinect system,
although the voxels are small enough.

3nvidia GTX 480 with 1.5 GB Ram
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mean: 6.567567

1/4 quantile: 2.034071

median: 4.529580

3/4 quantile: 9.254760

Fig. 4. Statue. euclidean error (0-8mm , > 8mm is gray), histogram of
euclidean error.

Targetbox Scene::The second test object is a target box
especially designed for the evaluation of depth cameras. It
is 1 x 1 x 0.5 meter in size and contains several geometric
objects made of styrofoam, as well as many regions with
slanted surfaces, curvature or sharp 90 degree corners which
are typically problematic for any depth acquisition system.
Therefore, we manually measured the box with an accuracy
higher than1mm.

Fitting the box size, we set the implicit voxel volume to
(1:6m)3 with 6003 voxels, yielding a voxel side length of
� 2:7mm. We only scanned the interior of the box and
therefore ignore its outside in the evaluation, visualized in
gray as can be seen in Figure 5 (scan distance was again ca.
1 meter).

Angle errors> 90� are mostly caused by vertices whose
nearest neighbor was matched to one vertex on the other side
of the surface (e.g. the inside and outside walls). Such errors
should be either ignored or handled as if they were �ipped by
180� (marked gray in Figure 5). Generally, surfaces which
are �at or have high curvature radii (like the styrofoam sphere
or cylinder) are reconstructed well with minimal angular
error. Sharp corners on the other hand are partly smoothed
out. We found slightly higher histogram densities for45�

angle errors which suggests that for a sharp90� edge at least
one additional face with45� is generated by the marching
cubes algorithm. The euclidean errors are generally low and
in the same range (5-10mm) as in the previous statue scene.
Only the higher error on the styrofoam sphere suggests that
the algorithm underestimates the volume of curved regions.
We can conclude that the voxel size of� 2:7mm was
suf�ciently small for this experiment and that the accuracy of
around10mm is also valid for such a medium scale scene.

Of�ce Scene::The third scene is a small of�ce room (6 x 4
x 2.5m) and represents one additional example of the dataset
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mean: 9.272530

1/4 quantile: 2.179000

median: 5.588000

3/4 quantile: 14.526000

Fig. 5. Targetbox: euclidean error (0-15mm , higher errors in gray),
histogram of euclidean errors.

described in Section II. Ground truth data was acquired
by terrestrial LiDAR using a Riegl VZ-400 time-of-�ight
scanner. Its accuracy is stated with5mm. The manufacturer
also documents a precision of3mm. Inside the of�ce overall
six scan positions were necessary for a suf�cient coverage.
This equals to about one day of labor for acquisition and
postprocessing.

In order to �t the whole room into the5123-voxel volume
we had to choose a voxel side length of about� 13:7mm
while keeping a scan distance of 1 to 2 meters. This means
that the actual accuracy of the Kinect system of about
5-10mm can no longer be fully exploited. Given current
graphics hardware, the of�ce scene represents the maximum
size which can be scanned by the KinectFusion system.

ICP alignment of the KinectFusion mesh and the ground
truth mesh are here not perfectly accurate as a small scaling
along the object axes was necessary. This is caused by
three reasons: �rst, the scene is heavily cluttered containing
many regions were any 3D scanning devices fails. Second,
the increased voxel sizes create a coarser mesh which is
more dif�cult to align to the LiDAR results. Third, the
LiDAR scan itself is more inaccurate in regions with small
scale detail and contains some holes and regions of low
point cloud density. The euclidean error is therefore about
one magnitude larger than for the other scenes. Yet, most
vertices with errors> 100mm are actually on the outside of
the room as the marching cubes algorithm produces walls
which are not �at faces but have a certain volume. As
Figure 6 shows, the error is well below80mm for most
vertices. These high errors are caused by regions were both
methods fail. Future work should focus on detecting such
regions of low certainty in order to mask them out in the
resulting benchmark datasets. To get an idea of the accuracy
in more con�dent regions, a robust statistical measure such
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Fig. 6. Of�ce: euclidean error (0-100mm , higher errors are also red),
euclidean error(0-50mm , higher errors are transparent), histogram of eu-
clidean error.

as the median error can be used whose value is just below
three voxel sizes (36mm). This indicates that even if the
number of voxels were increased, the measurement volume
of the current KinectFusion system (using Kinect depths as
input) should not be much larger than7x7x7m to achieve
maximum accuracy. Yet, more accurate depth sensors and
larger amounts of graphics card memory might soon alleviate
this limit. For now we conclude that very careful acquisition
of all concave regions in the of�ce is very challenging with
both 3D scanning methods.

A. Ground Truth Accuracy for Optical Flow and Stereo

In optical �ow, real frames at two successive time steps of
a video can be augmented with synthetic depth maps based
on known camera poses. As our KinectFusion scenes are
static, the depth maps can be reprojected to �ow �elds using
the camera transformation between both views. Although op-
tical �ow is only induced by camera movement, challenging
�ow �elds can be created (similar to the yosemite, grove
and urban scenes in [9]). For stereo, the second color image
should be aligned with respect to the epipoles. In order to use
real color images, for a given single view, a nearby view can
be found which is then recti�ed based on the known camera
poses and previously measured internal camera parameters.

In realtime computer vision applications a suf�cient ac-
curacy often is about one pixel in motion or disparities.
Hence, to achieve ground truth quality, the KinectFusion
system should record data which is one order of magnitude
more accurate. We synthesized a stereo disparity map and
an optical �ow �eld from two virtual views of the targetbox
scene (camera distance� 1:3m, �eld of view 40� , maximum
�ow magnitude� 25 pixel). We then compared the �ows and
disparities for both the high-accuracy scans as well as the
KinectFusion scans. Figure 7 shows the per pixel endpoint
error, a widely used error measure for optical �ow evaluation
[9]. The mean endpoint error for this scene was0:06 pixel
with a median of0:02 pixel. Most errors occurred on depth
discontinuities. To evaluate stereo disparity accuracies we
transformed the depths to disparity values (focal length 1100
pixel, 7:5cm eye separation). The mean disparity error was

Fig. 7. Left: rendering with optical �ow as hsv color overlay; Middle:
optical �ow endpoint error (0-0.2 pixel, higher errors are white) between
ground truth and KinectFusion based scene; Right: stereo disparity error
(0-1 pixel, higher errors are white) between ground truth and KinectFusion
based scene.

0:25 pixel with a median of0:11 pixel.

We conclude that KinectFusion based geometry data can
indeed be used to generate ground truth optical �ow and
stereo information in case the application requires accuracies
in the order of magnitude of around one pixel. Optical
Flow evaluation is hereby limited to static scenes but still
useful e.g. for simultaneous location and mapping (SLAM)
problems. With these results, we would like to encourage
practitioners to create their own ground truth datasets with
content speci�cally designed to sample the space of chal-
lenges within a given application.



IV. CONCLUSION AND FUTURE RESEARCH

We have compared 3D reconstructions produced by the
KinectFusion algorithm with ground truth data obtained
from high-precision 3D scanners. The Kinect sensor has
several advantages over such systems: The setup is fast as
no calibration is needed, scanning is fast, meshed results
are available within minutes and in contrast to LiDAR or
structured light scanners, no extensive manual postprocessing
is needed. The Kinect sensor also is also more portable and
small compared to other devices, facilitating the acquisition
of additional viewpoints in highly complex scenes. Finally,
the effective �eld of measurement is quite large, closing
the gap between portable structured light scanners which
are typically restricted to volumes< (1m)3 and LiDAR
equipment for larger outdoor scenes. We offer an exemplary
set of sequences in this scale range for download. (http:
//hci.iwr.uni-heidelberg.de/Benchmarks/ )

We found that the system can resolve object details
with a minimum size of approximately10mm. This also
represents the minimum radius of curvature for slanted or
curved surfaces which can be reconstructed reliably. Sharp
(depth) edges or highly concave scenes are as problematic for
KinectFusion as for many other 3D scanning technologies.
For indoor scenes with a volume of(7m)3 this accuracy
drops to � 80mm with GPU memory and the Kinects
minimum object distance as the limiting factors. Optical
�ow and stereo ground truth can be created with average
accuracies in the range of better than0:1 pixel.

Future work will focus on the quanti�cation and detection
of missing or incorrect geometry. Furthermore, we are going
to investigate other cheap depth sensors for more accurate
KinectFusion input data.
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