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Abstract: 

The reCAPTCHA concept provides a large amount of valuable information for various 

applications. First, it provides security, e.g. for a form on a website, by means of a test that 

only a human could solve. Second, the effort of the user for this test is used to generate 

additional information, e.g. digitisation of books or identification of house numbers. In this 

work, we present a concept for adapting the reCAPTCHA idea to create user-generated 

geographic information from earth observation data, and the requirements during the 

conception and implementation are depicted in detail. Furthermore, the essential parts of a 

Geo-reCAPTCHA system are described, and afterwards transferred, to a prototype 

implementation. An empirical user study is conducted to investigate the Geo-reCAPTCHA 

approach, assessing time and quality of the resulting geographic information. Our results 

show that a Geo-reCAPTCHA can be solved by the users of our study on building digitisation 

in a short amount of time (19.2 s on average) with an overall average accuracy of the 

digitisations of 82.2%. In conclusion, Geo-reCAPTCHA has the potential to be a reasonable 

alternative to the typical reCAPTCHA, and to become a new data-rich channel of 

crowdsourced geographic information. 
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1. Introduction 

Almost every internet user has used it so far - unconsciously providing valuable information 

for the digitisation of books: a reCAPTCHA (figure 1). The basic idea of a CAPTCHA (von 

Ahn et al. 2003) is to provide a test that only a human can solve, and that is simultaneously 

almost unsolvable for a machine. Thus, CAPTCHAs are commonly used to protect login forms 

from hacking attempts or to prevent users from email spam as a part of contact forms. The most 

common type of CAPTCHA presents distorted text that has to be identified. However, other 

CAPTCHA types, e.g. image-based or audio-based, do exist as well.  

 

 

Figure 1. A typical reCAPTCHA presenting two words to be identified by the user. (Google 2014a) 

 

A reCAPTCHA (von Ahn et al. 2008) extends this idea and uses the effort of the user 

to solve this test for a greater good. It presents two words to the user (figure 1), with one of the 

two words already known, which serves as a control word to identify an actual human user. The 

second word is unknown to the reCAPTCHA system itself, meaning that it cannot be 

automatically recognized with Optical Character Recognition (OCR) software. As the user 

cannot differentiate between the control word and the unknown word, both words have to be 

identified. With this crowdsourcing method, thousands of books have been digitised in the past 

years, with an accuracy of 96.1% over 1 billion responses (von Ahn et al. 2008). Nowadays, 

reCAPTCHAs are found on 328,117 websites at the time of writing (builtWith 2014). 

Geographic information is defined by Goodchild (1997) as the knowledge about where 

something is located and what is to be found at a given location. This paper presents a novel 

enhancement of the reCAPTCHA idea, and adapts it to the geographic information domain. We 

term this system "Geo-reCAPTCHA". Certainly, the system has to fulfil the same requirements 

as a typical reCAPTCHA, i.e. to provide a test that only humans can solve. Furthermore, Geo-

reCAPTCHA is designed to create geographic information from earth observation data for 

subsequent applications. Such user-generated geographic information (UGGI) is already a 

crucial part of many recent applications in the field of Geography and Geographic Information 

Science (GIScience). In addition, several different concepts are ubiquitous in GIScience like 

Volunteered Geographic Information (VGI), or Citizens as Sensors (Goodchild 2007), 

describing information captured from people. However, all these terms are united under the 

generic term UGGI, meaning all information captured directly (e.g. capturing of geometries by 

users) as well as indirectly (e.g. extracted from location-based social media data; cf. Roick and 

Heuser 2013). Prominent examples of applications depending on UGGI are OpenStreetMap 

(OSM) (OpenStreetMap 2014a) or Wikimapia (Wikimapia 2014). Two properties regarding 

UGGI have to be addressed in this context: i) the users’ heterogeneity and ii) the reliability and 

quality of the information. The users’ heterogeneity (i) for OSM is illustrated by Neis and Zipf 

(2012), showing that only 5% of the users are mapping frequently, whereas 19% are non 



recurring members. However, frequent users are more trained and are therefore supposed to 

generate more reliable information. Data errors, and abuse or vandalism, represent the major 

problems regarding the reliability and quality (ii) of UGGI (Neis et al. 2012). Geo-reCAPTCHA 

addresses both issues with redundancy of geographic information analogous to the idea of 

reCAPTCHA. 

The main objective of this article is to present a generic conceptual design for a Geo-

reCAPTCHA system. Based on this, a Geo-reCAPTCHA infrastructure architecture is 

proposed, leading to a prototype implementation that allows capturing UGGI. Using this 

prototype, we conduct a proof-of-concept by means of an empirical user study in which 

capturing time and quality of the geographic information are investigated.  

2. Background and Related Works 

This section will provide background information and requirements of CAPTCHA as well as 

the idea behind reCAPTCHA. Furthermore, the ongoing research regarding UGGI is analysed. 

2.1. CAPTCHA and the reCAPTCHA idea 

The term CAPTCHA was introduced by von Ahn et al. (2003), and is an acronym for 

"Completely Automated Public Turing test to tell Computers and Humans Apart". However, 

CAPTCHA is a special form of a Reverse Turing Test, also known as Human Interactive Proof. 

It provides a test that can easily be solved by humans, in contrast to machines. CAPTCHAs can 

be classified based on the medium used for the testing, such as texts, images or audio files. An 

overview of algorithms and methods for all classes of CAPTCHAs is given by Hidalgo and 

Alvarez (2011), and more recently by Roshanbin and Miller (2013). The most common 

CAPTCHA is the text-based CAPTCHA (e.g. "BaffleText" by Chew and Baird 2003). This 

method presents a text fragment that is modified by distortions and disruptions. Those 

modifications make an automatic analysis by Optical Character Recognition (OCR) software 

more difficult. On the other hand, a human user can still read the text and  easily pass the test. 

Another class of CAPTCHAs are the image-based CAPTCHAs. A recent approach is 

introduced by Kim et al. (2010) using rotated cut-outs of an image. The user has to find the 

correct orientation of the sub-images by rotating them in order to pass the test.  

A rethinking of the CAPTCHA technology is made by von Ahn et al. (2008) by 

introducing the text-based reCAPTCHA. Instead of using one word for the test, reCAPTCHA 

presents two words to the user: one unknown word that cannot be identified with OCR software, 

and a control word for which the answer is known. By typing the control word correctly, the 

system identifies the user as a human and considers the unknown word as correct as well. 

Therefore, it is essential that the user cannot differentiate between the control word and the 

unknown word. The accuracy of the word identification increases depending on the amount of 

user results for a specific unknown word. The idea of reCAPTCHA is used to digitize words 

from old printings, for which automatic software has failed. With this approach over 440 million 

words were correctly deciphered in one year with an accuracy of 96.1% over 1.2 billion 

responses (von Ahn et al. 2008). However, these numbers are from the year 2008, in which 

reCAPTCHA was not as well known or commonplace as today. In comparison with 2008, when 



reCAPTCHA was deployed in ca. 40,000 Web sites (von Ahn et al. 2008), the number of Web 

sites with reCAPTCHA has risen to 328,117 (builtWith2014) as of the day of writing. 

Concerning security, the hardest reCAPTCHA has recently been defeated with 99.8% accuracy 

by Google's own development team using neural networks (Goodfellow et al. 2014). Thus, they 

concluded that the security of using distorted text for a CAPTCHA test is "significantly 

diminished". 

The geographic or spatial aspect regarding CAPTCHA systems has not played an 

important role. So far, localized CAPTCHAs are one basic approach. Fiads and Voyiatzis 

(2013) state that English words or the Latin alphabet are not suitable for a majority of internet 

users today. As a result, CAPTCHA systems with different languages or alphabets have been 

presented, like the system introduced by Banday and Shah (2011) for India in the Urdu 

language, using the IP address to geo-locate the user. Another example for this is the text-based 

CAPTCHA using Chinese characters proposed by Gustafson and Li (2013). GeoCAPTCHA 

described by Wei et al. (2012) is an actual image-based CAPTCHA that considers the 

geographical surrounding. This CAPTCHA scheme uses personalized contents in the form of 

rotated 3D street-view images. However, no current CAPTCHA approach with a spatial 

component uses the idea of reCAPTCHA to produce user generated geographic information. 

2.2. User-Generated Geographic Information (UGGI) 

The well-known OpenStreetMap (OSM) is one of the most popular projects of VGI acquisition 

and usage. OSM is a free map of the world created by over 1.7 million volunteers interested in 

mapping (OpenStreetMap 2014b). For many regions of the world, the data density of the map 

is remarkably high (Raifer 2014), with many different geographic features that can be tagged, 

like aerial ways, shop types, or tourist destinations (OpenStreetMap 2014c). However, the map 

is certainly not complete for all parts of the world, and is prone to errors and vandalism (Haklay 

et al. 2010, Neis et al. 2012). A different idea is pursued by Wikimapia: describe any place on 

Earth. Therefore, it offers the possibility to add information to a specific location in the form of 

rectangles or polygons with attached information (in the form of a Wiki). A related approach is 

adapted by Tomnod (2014), which uses satellite images to solve current problems in specific 

campaigns, like the mapping of damage caused by the Oklahoma Tornado from 2013 

(DigitalGlobe 2014), or finding missing Malaysian Airlines flight 370 (CNN 2014). For each 

campaign, a small set of tags is available to the user, who can freely navigate through the 

satellite imagery searching for relevant objects to tag. A similar concept is used by the Geo-

Wiki project (Geo-Wiki 2014) to improve global land cover maps. For this purpose, volunteers 

classify land cover using high resolution imagery in Google Earth through different 

crowdsourcing campaigns run by the Geo-Wiki team (Fritz et al. 2009, Fritz et al. 2012). 

However, all those platforms and projects are dependant on volunteers and their commitment 

and ambition to contribute. 

For this reason, Geo-Wiki additionally uses simple user interfaces in the form of a game 

called Cropland Capture to attract more people (See et al. 2014). Using games as a possibility 

to generate geographic information has recently become very popular in science and economics 

(Matyas et al. 2012, Jordan et al 2013), as it makes it easier to attract volunteers. The company 



Pallas Ludens (Pallas Ludens 2014), for example, offers the possibility to integrate annotation 

tasks in games to address millions of gamers. 

A comprehensive overview of VGI developments and research is presented by Neis and 

Zielstra (2014). The reliability and credibility of VGI, with a focus on OSM, is in particular 

addressed in their work, as this has often been questioned in the past (e.g. Flanagin and Metzger 

2008, Comber et al. 2013, Foody et al. 2013). Despite these issues, UGGI is integrated in many 

different applications. This can be in the form of background data for location-based apps on 

mobile devices like games (e.g. BucketMan (Google 2014b)), or navigation (e.g. Locus Map 

Free (Google 2014c)), as well as applications, in the context of Smart Cities and Digital Earth, 

like CITI-SENSE (CITI-SENSE (2014)) or WeSenseIt (WeSenseIt (2014)). The possibility of 

generating a large amount of geographic information in a short period of time makes UGGI 

systems especially relevant and important, particularly for time-critical applications such as 

disaster response (Middleton et al. 2014), e.g. the rapid mapping activity presented by Reimer 

et al. (2014) for the crisis in the Philippines following typhoon Haiyan. Over 200 participants 

mapped valuable information for relief workers in two mapathons. Relevant user-generated 

information in the form of geolocated photos from the platforms Flickr and Instagram were 

provided as well.  

2.3. Implications for a Geo-reCAPTCHA concept 

To the knowledge of the authors there is currently no approach among the geo-related 

CAPTCHA approaches that extends the reCAPTCHA idea and actually produces geographic 

information. In fact, only a few approaches take the user’s geographic location into account at 

all. This gap between the need for complete and updated geographic information and the need 

for platforms to generate them should be filled with this work. Therefore, a conceptual design 

for such a UGGI generating system is developed. Based on our review of the aforementioned 

related works concerning CAPTCHA and reCAPTCHA as well as UGGI, we conclude with 

the technical requirements listed in table 1, which have to, or should be, addressed during the 

Geo-reCAPTCHA system design. 

Table 1. List of technical requirements that have to, or should be, addressed during the Geo-reCAPTCHA 

system design. 

No. Technical Requirement 

1 HAVE TO tell computers and humans apart (von Ahn et al. 2003) 

2 HAVE TO be solvable in an acceptable amount of time (analogous to reCAPTCHA) 

3 HAVE TO avoid the user distinguishing between control and unknown data 

4 SHOULD use the same type of CAPTCHA for the control and the unknown data 

5 SHOULD not exclude certain groups of people (regarding language, age, etc.) 

6 SHOULD generate valuable geographic information (regarding reliability, quality, and quantity) 

3. Methodology 

Based on the technical requirements (table 1), a conceptual design for a UGGI generating 

system called "Geo-reCAPTCHA" is developed, which adapts the reCAPTCHA idea to the 

geo-domain. Furthermore, a web-based prototype is implemented, which is then used to 

conduct an empirical user study. 



3.1. Conceptual Design 

The main idea of Geo-reCAPTCHA is to use human knowledge to solve the CAPTCHA, and 

to collect valuable geographic information at the same time. Such geographic information 

comprises the geometric representation of spatial features (e.g. the floor plan of a house, point 

location of a tree) and non-geometric, thematic, and semantic information (e.g. type of land use, 

damage or no-damage). The type of geometry, however, is use case specific and is not relevant 

for the generic concept. 

 

Figure 2. Geo-reCAPTCHA activity diagram consisting of the four main steps. 

 

An overview of the essential steps for a Geo-reCAPTCHA is provided by the basic 

activity diagram in figure 2. These four generic steps displayed in figure 2 have to be addressed 

in every implementation of such a system. Subsequently, each step and the corresponding 

mandatory parameters are presented in detail. 

Selection 

Each use case requires different basic data for the Geo-reCAPTCHA system (e.g. cadastre data, 

or remote sensing data for a specific geographic region). In the selection step, the system has to 

pick parts of the data (e.g. a small subset of the remote sensing data) that is used for the user 

input in the next step. Therefore, two main preliminary parameters have to be set. First, the 

known and the unknown data have to be defined. In this case, both parameters describe a data 

source (or a link to a data source) from which data are gathered or stored. This definition implies 

the spatial extent for the data capturing which can be different for the known and unknown data. 

The known data are used as the control data for the CAPTCHA whereas the unknown data are 

newly captured from the user. After the setting of both essential parameters, the selection step 

chooses a feature or a geographic extent from the two data sources and delivers the information 

to a client. In this process, it should be possible to define favoured regions (e.g. a specific city 

or a disaster region) from which features are selected more often in order to emphasise specific 

areas. Furthermore, additional information can be used to ensure that certain features are 

included in the data selection (e.g. compare with OSM data to make sure that a building is 

visible in an aerial image). 



Input 

A Geo-reCAPTCHA has to provide an input interface for the user. This interface can differ 

depending on the type of geographic information being captured. This information can be 

geometric (e.g. point, line, polygon, or point cloud) as well as non-geometric (e.g. context, 

topology, semantics). In the geometric case, the geometry class has to be defined. The classes 

can be derived from the Open Geospatial Consortium (OGC) simple feature specification (OGC 

2011). Although Geometry class is capable of being integrated in the concept, it is 

recommended that the class GeometryCollection be excluded to keep the system simple for the 

user. This means that only one feature at a time should be captured from the user. Thus, the 

system has a higher chance of achieving the technical requirement to be solvable in an 

acceptable amount of time (table 1). 

In the non-geometric case, it has to be defined whether i) a collection of given values is 

presented to the user or ii) the user can type free text. In the first case, the expected user input 

is known (e.g. taken from existing feature attributes of projects like OSM or GeoWiki) and thus 

the interpretational efforts during the postprocessing are much less complex. The possibility to 

type free text in the second case has pros and cons. On the one hand, the results might be much 

more accurate due to the freedom of the user input and the fact that the user is not limited to 

pre-defined options. On the other hand, it may require significantly more effort to interpret the 

user input since the actual meaning has to be extracted and analyzed. Furthermore, the 

interpretation of free text (automatic, semi-automatic, or manual) may result in a 

misinterpretation of the information. 

Afterwards, corresponding capturing tools have to be provided for the user input. For 

this purpose, it is important that the user cannot distinguish between the input for the control 

data and for the unknown data, as defined in the technical requirements (table 1). If this was 

not the case, the user could simply enter the control data to pass the CAPTCHA, but the 

unknown data would not be reliable. This is also the reason why one cannot simply mix up 

different types of CAPTCHA (according to the technical requirements) in a reCAPTCHA 

system (e.g. text-based CAPTCHA and a map input for unknown data) as the user is expected 

to avoid the input of the unknown data to save time.  

Verification 

The most important part of the system is the actual verification of whether the CAPTCHA is 

passed or not, i.e. whether the input was made by a human user or a machine. The verification 

has to be adapted to the type of information captured from the user, and has to compare the 

captured information with the control data. This testing is completely use case specific and can 

vary in its complexity. For example, it can be a rather complex comparison of two geometries 

(e.g. a floor plan of a house) to determine equality, or a simple word check between the input 

of the user and a pre-defined set of correct values. 

Postprocessing 

During the postprocessing step the verified information of the user is analysed or combined 



with other data to generate an additional value or to solve a specific problem (for example, 

deriving one building outline out of all user digitisations for one object). This step should be an 

integral part of a Geo-reCAPTCHA. Analogous to the verification step, the postprocessing is 

use case specific as well. It can vary from simply storing every user input (e.g. for visualisation 

purposes), to complex heuristics and analysis (e.g. comparing digitised building geometries 

with building data derived from remote sensing imagery for change detection approaches). 

Furthermore, additional external data sources can be included in the postprocessing step (e.g. 

land cover classifications from remote sensing data). 

3.2. Prototype Implementation 

The four essential steps from the conceptual design are transferred into a Web infrastructure 

design. As a proof-of-concept, a Geo-reCAPTCHA prototype is implemented in which the user 

has to digitise the boundary of buildings from airborne imagery as illustrated in figure 3. A 

generic overview of the infrastructure design for this prototype is illustrated in figure 4. The 

essential parts are subsequently described in detail. 

 
Figure 3. Prototype implementation of a Geo-reCAPTCHA client. Two map representations offer the possibility 

to digitise building boundaries in the form of polygons. The digitisation in the left map is already completed 

(yellow polygon) whereas the digitisation in the right map is currently in progress (blue sketch). 

 

 

Figure 4. Infrastructure design for a web-based Geo-reCAPTCHA prototype consisting of a cloud component, a 

web server, and a client. 

Web Server 

The web server builds the centrepiece of the infrastructure design by managing all incoming 

requests of the client, building the bridge to the geodata sources and holding the logic of the 



Geo-reCAPTCHA system in the form of selection, verification, and postprocessing 

functionality. The initial point is the selection step in which the essential parameters "type", 

"unknown data" and "control data" have to be defined. 

The information type defines whether the user has to digitise geometries or has to 

capture non-geometric information. The prototype implemented in this work will capture 

geometric information in the form of polygons. According to the information type, the control 

data and the unknown data have to be defined, e.g. by defining a region and a base layer from 

which the data are extracted. The selection process can now randomly fetch data from the given 

data sources or with emphasis on one or more defined favoured regions within the data. For our 

prototype, aerial images are provided by an OGC Web Map Service (WMS) for both control 

and unknown data.  

The second part of the web server consists of the verification and the postprocessing 

steps as outlined in the generic concept. The verification process is called by the client after the 

user inputs data. As it is defined in the conceptual design, it has to be decided whether the user 

input matches the control data or not. The presented Geo-reCAPTCHA prototype verifies the 

input using a simple algorithm that builds a buffer around the boundary of the control geometry 

and checks whether the boundary of the polygon digitised by the user lies completely within 

this buffer area. 

If the user input for the control data is evaluated as correct, a message will be sent to the 

client to confirm the (successful) passing of the CAPTCHA. Simultaneously, the input of the 

unknown data is considered to be correct as well and can therefore be integrated into the 

postprocessing procedure. The prototype currently has no automatic postprocessing 

implemented as the interpretation is done manually in the course of the empirical user study. 

Client 

The client is the interface for the user with which input can be captured and transferred to the 

web server. In the prototype, the client is a typical website displayed within a standard browser. 

The website requests the relevant data for the Geo-reCAPTCHA from the web server and 

visualises it for the user in two map representations (figure 3). One map shows the selected data 

of the unknown data whereas the other map shows the control data. If a specific feature is pre-

selected for capturing, it has to be marked somehow in the map to make sure that it can be 

correctly identified by the user. However, it has to be assured that the user cannot identify the 

map representation that displays the control data (technical requirements in table 1). 

Each of the two map representations has to provide a digitisation tool (as implemented 

in the prototype in figure 3) with which the user can capture the selected geometry type (e.g. a 

polygon or a linestring). The tool has to follow certain specifications: First, only the geometry 

type defined for the CAPTCHA is allowed in the digitisation process. Switching between 

geometry types is not recommended. After the user finishes the digitisation of the first 

geometry, the tool has to be disabled so that no further geometry can be captured from the user. 

No edit or delete functionality is provided to keep the system as simple as possible. However, 

the user can reload the map representation to receive new data from the server, and restart the 

digitisation. For a non-geometric Geo-reCAPTCHA, additional input tools are needed like a 

selection box with pre-defined labels or a text field for free user input. 



After both inputs of the user, the client automatically submits the result to the web 

server. Subsequently, the web server returns the result of the verification process. If the test is 

passed, the user can proceed. If the test is failed, the website will reload the test and request 

new data from the server. 

Cloud 

The cloud in this case describes any place, server, service, or resource in general, from the Web. 

This also includes local geodatabases as well as geospatial functions from a programming 

library installed on the Geo-reCAPTCHA web server itself. The cloud component of the 

infrastructure design specifies these resources to geodata sources and the optional geospatial 

functionality. 

3.3. Empirical User Study 

An empirical user study has been conducted to investigate how long our CAPTCHA approach 

within the Geo-reCAPTCHA prototype takes to be solved, and to derive the accuracy of the 

derived UGGI. In general, everyone aware of the user study was able to participate. However, 

specific advertisement was made among students and staff members of the Institute of 

Geoinformatics and Remote Sensing in Osnabrueck (Germany) and the Institute of Geography 

in Heidelberg (Germany). Additionally, many participants are geography students consulted 

during a basic geography lecture at the University of Vienna (Austria). Thus, the following user 

groups are assumed to participate: Student of natural science, student of non-natural science, 

student of geography, student of geoinformatics or similar, geoinformatics expert, none of the 

listed groups. 

In the experimental setup, the user is challenged to digitise the outlines of 15 

consecutive arbitrary buildings from the map representation in a fast but convenient way. Our 

study area contains simple building footprint shapes (e.g. rectangular) and also difficult cases 

where the building is composed of several parts (e.g. attached garage) and also cases where 

trees are adjacent to the building. This selection of different building situations will allow us 

identifying the limitations of building digitization in Geo-reCAPTCHA, such as best and worst-

case buildings. Each digitisation is recorded with a randomly generated user identifier to 

estimate the overall number of participants as it is not allowed to simply store the users' IP 

address. This identifier changes when the same user opens the site again which is why users are 

able to redo the study. Due to this fact, we cannot provide an exact number of participants but 

a number of digitisation rounds with the same user identifier.  

Table 2. List of data that are gathered in the empirical user study. 

Name Description 

GEOMETRY The geometry of the digitised building outline 

TIME The time for finishing the digitisation (in s) 

USER GROUP The user group in the categories as mentioned above 

AGE The user’s age in the categories:  

18 – 24, 25 – 34, 35 – 44, 45 – 60, > 60, no age selected 

TIMESTAMP The timestamp of the digitisation (date and time) 

POINTID The identification number of the different centres of the map view 



USERID The identification number which is created randomly for each user to identify 

digitisations from the same user 

COUNTER The counter that represents the number of digitisations done by the user 

 

The description of the test for the user was generically formulated to avoid influencing 

the user’s behaviour during digitisation. It was not mentioned in the task description that the 

user should be as fast or as accurate as possible. Before starting with the actual digitisation, the 

user is requested to give basic information about age and user group (or rather experience level). 

Afterwards, a reduced version of the prototype with only one map representation is presented 

to the user. In this case, 25 pre-defined centre points for the map view are available to make 

sure that a building is visible for each digitisation run. This leads to an extensive overlap of the 

UGGI and allows for substantial statistical analysis of the accuracy of the captured geometries. 

The time from the first click in the map to the moment when the user finishes the digitisation 

with a double-click is recorded and stored. The prototype implementation of the experiment 

does not permit editing or deleting of digitised features. However, the user has the option to 

withdraw the capture by reloading the map representation with new data and thus a new test. 

This function should be used if the user is not able to identify a building within the dataset. 

Each reloading process is recorded and stored in the database in order to investigate the reasons 

for reloading and withdrawing tests. The empirical experiment is finished for the users as soon 

as 15 buildings have been digitised. The structure of the gathered dataset is described in table 

2. 

 

 

Figure 5. Three initial quality measures based on the overlapping and non-overlapping areas between the 

reference (solid polygon) and digitised (dashed polygon) geometries. 

 

Furthermore, standard quality measures for building extraction are derived for each 

building (cf. Rutzinger et al. 2009; Heipke et al. 1997). Each digitised geometry is compared to 

a reference with which the digitised geometry shares the most overlapping area. In a first step, 

three measures are derived based on the overlapping and non-overlapping areas between the 

reference (solid polygon) and the digitised (dashed polygon) geometries (figure 5). The true 

positive (TP) area is the one that exists in both polygons (consensus), i.e. intersection area in 

GIS terminology. In contrast, the area that appears only in the digitised geometry is classified 

as false positive (FP). The area that is not digitised by the user but is actually part of the 



reference geometry is the false negative (FN) area. Consequently, the TP-rate (completeness), 

the precision (correctness), and the overall quality of the digitised geometry can be calculated 

with the following equations (cf. Rutzinger et al. 2009): 

 𝑇𝑃-𝑟𝑎𝑡𝑒 (𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠)= 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (1) 

 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠)= 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 

 𝑞𝑢𝑎𝑙𝑖𝑡𝑦= 
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 (3) 

 

Furthermore, it is analysed how many digitised geometries are needed to receive 

appropriate results that almost match the corresponding reference geometry. For this purpose, 

the idea of a raster-based quantitative analysis by Klonner et al. (2014) is adapted. The idea is 

to build a raster with a specific cell size and sum up the number of polygons within each cell. 

An estimation for an appropriate number of digitised geometries can be derived by comparing 

the boundary of the reference geometry with the raster grid (figure 6). Thus, for a Geo-

reCAPTCHA implementation a threshold for the transition from unknown to known data has 

to be set. 

 

Figure 6. Reference polygon (grey) with overlaying raster grid. The raster is filled with the respective number of 

digitised polygons for each raster cell. Values above 1 are coloured red and are used for estimating the reference 

geometry. 

4. Results 

The conceptual design was implemented in a prototype, which was used for a proof-of-concept 

in the form of an empirical user study. Within the two weeks of the empirical user study, 2260 

geometries were digitised in 189 total digitisation rounds. As users could also digitize multiple 

times, the number of unique users might be lower than the number of digitisations. The 

distribution of the digitisations among user groups and age groups of the users is presented in 



table 3. According to the user selection, most geometries are digitised by students of geography 

with 950 (42.0%) followed by geoinformatics experts (531 geometries (23.5%)) and students 

of geoinformatics or similar (428 geometries (18.9%)). As the study was promoted in a basic 

lecture in geography, it can be assumed that most of the students of geography do not have 

much expertise regarding geoinformatics. Furthermore, most geometries are digitised from 

users with an age from 25 to 34 years with 1285 geometries (56.9%) as well as 18 to 24 years 

with 700 geometries (31.0%). People with an age of 45 and above are not well represented in 

this user study (60 geometries, 2.6%). The options "None of the listed groups" for the user 

group and "No age selected" for the age were the default values for the selection boxes in the 

user study.  

Table 3. Distribution of digitisations among the categories user group and age of the participants of the 

empirical user study. 

Age 

User group 
18 -24 25 - 34 35 - 44 > 45 

No age 

selected 
Total 

Student of natural science 1 90 0 0 0 91  

(4.03%) 

Student of non-natural science 30 30 0 0 0 60  

(2.65%) 

Student of geography 499 451 0 0 0 950  

(42.03%) 

Student of geoinformatics or similar 142 259 27 0 0 428  

(18.94%) 

Geoinformatics expert 13 363 125 30 0 531  

(23.49%) 

None of the listed groups 15 92 15 30 48 200  

(8.85%) 

Total 700  

(30.97%) 

1285  

(56.86%) 

167  

(7.39%) 

60  

(2.65%) 

48  

(2.12%) 

2260 

(100.00%) 

4.1. Digitisation Process 

In a first step, the time for digitising an arbitrary building in comparison with the derived quality 

is analysed. The recorded time is almost normally distributed with an average of 11.3 s and a 

standard deviation of 74.5 s over all 2260 digitised geometries for 68 different building objects. 

The high standard deviation is caused by three very long digitisation times (way above 60 s) 

with a maximum of 3527 s (almost 59 min). Removing those three datasets, the average 

digitisation time changes to 9.6 s with a standard deviation of 6.9 s. The following analysis will 

be based on the cleaned datasets. 

Table 4. Descriptive statistics of all digitisations regarding the digitisation time (in s) and quality (in %) of one 

building divided by user groups. 

  Digitisation time for one building [s] Quality of one building [%] 

User group N Min Max Mean Std. dev. Min Max Mean Std. dev. 

Student of natural science 91 2.8 39.0 11.4 6.7 0 97.0 79.6 24.2 

Student of non-natural science 60 3.2 49.4 12.1 9.6 0 95.5 79.5 22.4 

Student of geography 949 2.1 44.2 8.6 5.8 0 97.6 82.4 20.5 

Student of geoinformatics or similar 426 2.2 57.0 10.4 8.0 0 98.3 83.3 18.3 

Geoinformatics expert 531 2.3 59.9 9.5 6.9 0 97.9 83.9 18.2 

None of the listed groups 200 1.4 56.1 11.5 7.4 0 96.9 76.8 28.1 

Table 5. Descriptive statistics of all digitisations regarding the digitisation time (in s) and quality (in %) of one 

building divided by age groups. 



  Digitisation time for one building [s] Quality of one building [%] 

Age group N Min Max Mean Std. dev. Min Max Mean Std. dev. 

No age selected 48 1.4 35.5 11.3 7.3 0 94.1 59.9 33.5 

18 - 24 699 2.3 56.1 9.6 6.6 0 97.7 83.5 19.1 

25 - 34 1283 2.1 57.0 9.2 6.9 0 98.3 82.6 20.2 

35 - 44 167 3.8 59.9 11.1 7.6 0 97.2 81.5 20.2 

> 45 60 5.1 32.7 12.7 6.9 0 97.2 78.9 27.6 

 

Furthermore, time and quality are analysed in detail to determine differences between 

user groups and groups of age. Table 4 shows the results for the corresponding user groups. 

Students of geography are digitising one second faster in the mean (8.6 s) than the 

geoinformatics experts (9.5 s), which are the second fastest group. The quality of the experts, 

however, is slightly higher in the mean (83.9% compared to 82.4%) with a lower standard 

deviation (18.2% to 20.5%). It can be seen that the groups with geography or geoinformatics 

background (students of geography, students of geoinformatics or similar and geoinformatics 

experts) do record the lowest values regarding digitisation time and the highest average qualities 

of building polygons.  

The results for the different age groups can be seen in table 5. Participants with an age 

between 18 and 34 are generally slightly faster (9.2 s to 9.6 s in the mean) than older participants 

(10.2 s to 13.5 s in the mean). Regarding the quality of the digitisation, the differences are much 

smaller between these age groups. The highest quality is recorded for the 18-year to 24-year 

old users with 83.5%. The 35-year to 44-year old users, however, record only a slightly lower 

quality of 81.5%. Overall, performing an analysis of variance (ANOVA) and a t-test, the user 

and age groups do show significant differences regarding digitisation time and quality. 

The presented results provide insights into the fulfilling of the two main Geo-

reCAPTCHA requirements (table 1). First, it is shown that a map-based CAPTCHA can be 

solved in an overall mean of 9.6 s. Thus, a total time for a Geo-reCAPTCHA of 19.2 s can be 

expected as the Geo-reCAPTCHA approach requires two digitisations (for the control and the 

unknown data). Von Ahn et al. (2008) proved that, on average, the time required to solve a 

conventional CAPTCHA is 13.51 s and 13.06 s for a reCAPTCHA. Therefore, a Geo-

reCAPTCHA does need more time to be solved than a reCAPTCHA. Nevertheless, regarding 

the effort of other CAPTCHAs like image-based CAPTCHAs, the expected time can be 

considered acceptable from our point of view as it is less than 50% slower than traditional 

reCAPTCHA. Furthermore, the results of this user study show that Geo-reCAPTCHA can be 

solved successfully by any of our user groups.  

Moreover, the main Geo-reCAPTCHA requirements ask for the creation of reusable 

information. An overall quality for a single building of 82.2% on average suggests that this 

requirement is fulfilled in the specific use case of building digitisation. However, a detailed 

analysis of the digitisation quality is needed. Additionally, quantitative statements regarding 

the amount of digitisations that are required for a successful derivation of a valid geometry from 

Geo-reCAPTCHA have to be determined.  

4.2. Quality and redundancy of multiple object digitisations 

Using the calculated accuracy parameters, the building objects can be described based on a 

single user digitisation and also the full track of all digitisations available for each object.  



Table 6. Descriptive statistics of the three accuracy parameters TP-rate, precision, and quality (equations 1-3) 

for all digitised geometries (all values in %). 

Accuracy parameter Min Max Mean Median Std. dev. 

TP-rate (completeness) 20.4 100.0 88.8 95.06 8.7 

Precision (correctness) 22.1 100.0 88.1 95.10 9.2 

Quality 20.4 98.3 82.2 88.84 10.7 

 

The three accuracy parameters (equations 1-3) are calculated for each single building 

digitisation individually. The accuracy statistics of all building digitisations is summarised in 

table 6. Overall, an average quality of 82.2% with a standard deviation of 10.7% is measured. 

The mean values for the completeness and the correctness are quite similar with 88.8% and 

88.1%, respectively. The maximum values of those two parameters are recorded with 100%. 

However, this is not surprising as digitisations that are fitting the building footprint or are larger 

will result in a completeness of 100%, whereas digitisations that are completely inside of the 

reference geometry (and thus smaller) will deliver a correctness of 100% and completeness 

values lower than 100%. The mean quality of digitisations is 88.1% for all digitisations with 

completeness above the median value (95.06%). This indicates that those buildings are digitised 

very well but presumably slightly larger than the actual building footprint. Likewise, the mean 

quality of digitisations reaches 89.9% for all digitisations with correctness above the median 

value (95.10%). Thus, the majority of buildings was captured very well. Here, the quality value 

of 89.9% indicates that those buildings were digitized slightly smaller than the reference 

building footprint. 

Figure 7 shows the distribution of reloads according to the respective centre points of 

the map view. It can be seen that some map views (i.e. centred on a certain building) are skipped 

more often than others. One of the lowest mean qualities for a building (53.6%) is found in the 

map view with the PointID 12 (figure 8). The structure of the main building is basically 

rectangular and thus not complex at all. However, it is not obvious which part of the image 

actually is part of the building or belongs to another object like a garage. Most digitisations in 

this case are focused on the main building, which results in a poor digitisation quality. The 

building object with one of the highest average qualities (92.7%) is shown in figure 8. The 

building has a simple structure that can easily be distinguished from its surroundings.  

 



 
Figure 7. Distribution of reload frequencies for each map centre point. 

 

Figure 8. Aerial images and corresponding geometries (reference: red / digitisations: blue) of the building with 

the lowest overall average quality (53.56%) within the map view of PointID 12 (A) and the building with the 

highest overall average quality (92.73%) within the map view of PointID 6 (B). 

 

The raster-based analysis of the cumulated geometries (Figure 9 and 10) supports these 

observations. Both images are classified according to the number of polygons within each raster 

cell. It is shown that even a low number of digitised geometries deliver an appropriate 

estimation for the actual building. Figure 9 emphasizes the problem of neighbouring buildings 

that can or cannot be recognized as a part of the main building by the user. However, the main 

building itself can be derived from the digitised geometries despite the low overall quality 

(compared to the reference geometry) of the digitisations for this building. Thus, it can be stated 

that if all digitisations are combined in to one geometry, the quality of this geometry will be 

better than the single polygons individually. However, at a certain point, the gain of quality is 

not significant as the overall quality is already high. Therefore, a threshold for the number of 

digitised geometries for one building can be defined, at which point the building is 

approximated accurately. This threshold has to be adapted depending on i) the geometries that 

are captured from the Geo-reCAPTCHA (e.g. point or polygon) and ii) the method that is used 

to combine the geometries (e.g. centre point of a point collection, intersection of a polygon 

collection).  



 

Figure 9. Number of overlapping geometries on an 18.0 m x 27.6 m raster with a cell size of 0.2 m for the 

building with the lowest overall quality (53.56%). 

 

Figure 10. Number of overlapping geometries on a 21.4 m x 24.2 m raster with a cell size of 0.2 m for the 

building with the highest overall quality (92.73%). 



5. Conclusions 

In this work, a concept for adapting the reCAPTCHA idea to gather user-generated geographic 

information from earth observation data is presented. Therefore, the reCAPTCHA concept was 

extended to provide geographic information instead of text to the user. Digitisation tools allow 

for capturing new geometries or semantic information about a geographical feature. 

The performed Geo-reCAPTCHA user study on building geometry mapping revealed a 

digitisation time per building object of 9.6 s (average over 2257 geometries) which results in 

an average total solving time for a Geo-reCAPTCHA of 19.2 s. Furthermore, an average quality 

of single digitised building polygons of 82.2% was achieved. A detailed analysis shows that the 

differentiation between the main building and additional buildings is one of the main reasons 

for poor digitisations. However, the combination of all the single building digitisations allows 

for an appropriate estimation of the actual building despite the poor quality of some 

digitisations.  

The results of the empirical user study show that a Geo-reCAPTCHA is capable of 

producing geographic data with high accuracy in a small amount of time for the digitisation of 

one building. Above that, there are further geographic applications and potential use cases in 

which data from Geo-reCAPTCHA could be integrated. One use case could be to contribute to 

the digitisation of base maps in crisis-prone parts of the worlds where maps are missing (MSF 

UK 2014). Moreover, Geo-reCAPTCHA could be used to classify remote sensing data. For 

example, Geo-Wiki could utilize Geo-reCAPTCHA to update the global land cover 

classification by presenting random parts of satellite images in which the predominant land 

cover class (e.g. forests, agricultural, or urban areas) should be digitised. Beyond that, even 3D 

earth observation data in the form of laser scanning point cloud data can be classified by 

identifying objects within the point cloud (e.g. a house or a tree) using Geo-reCAPTCHA. 

These LiDAR datasets are particularly relevant for establishing reference object libraries, such 

as for vegetation objects (Koenig et al. 2013) where the large amount of reference object 

features improves automatic 3D tree characterization.  

In conclusion, all technical requirements, which are extracted from our review of the 

related works (table 1), are addressed in the Geo-reCAPTCHA system design. Thus, Geo-

reCAPTCHA offers an appropriate alternative to reCAPTCHA regarding CAPTCHA security 

as well as the resulting data quality. 
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