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Abstract 

In precision agriculture, detailed geoinformation on plant and soil properties 

plays an important role, e.g., in crop protection or the application of 

fertilizers. This paper presents a comparative classification analysis for post-

harvest growth detection using geometric and radiometric point cloud 

features of terrestrial laser scanning (TLS) data, considering the local 

neighborhood of each point. Radiometric correction of the TLS data was 

performed via an empirical range-correction function derived from a field 

experiment. Thereafter, the corrected amplitude and local elevation features 

were explored regarding their importance for classification. For the 

comparison, tree induction, Naʾve Bayes, and k-Means-derived classifiers 

were tested for different point densities to distinguish between ground and 

post-harvest growth. The classification performance was validated against 

highly detailed RGB reference images and the red edge normalized 

difference vegetation index (NDVI705), derived from a hyperspectral sensor. 

Using both geometric and radiometric features, we achieved a precision of 

99% with the tree induction. Compared to the reference image classification, 

the calculated post-harvest growth coverage map reached an accuracy of 

80%. RGB and LiDAR-derived coverage showed a polynomial correlation 

to NDVI705 of degree two with R² of 0.8 and 0.7, respectively. Larger post-

harvest growth patches (> 10 x 10 cm) could already be detected by a point 

density of 2 pts. / 0.01 m². The results indicate a high potential of 

radiometric and geometric LiDAR point cloud features for the identification 

of post-harvest growth using tree induction classification. The proposed 

technique can potentially be applied over larger areas using vehicle-

mounted scanners. 
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1. Introduction  

1.1. Importance of Post-Harvest Growth Management 

Detection and control of post-harvest growth (weed and second growth) are 

important fields of precision agriculture (PA) (Weis et al., 2008). In most crops, post-

harvest growth negatively influences yields because of the additional competition for 

nutrients, water, and light, or due to insects and diseases settling down within post-

harvest growth (Zimdahl, 2013). In case of second growth, such problems are due to 

seeds of low quality, which fall to the ground as a result of bad weather conditions and 

delayed harvest, or due to the cultivation of transgenic crops in combination with less 

tillage. Depending on the crop, seeds can be germinable for many years and influence the 

growing crops. Although these effects and the countermeasures depend strongly on crop 

and weed species, lower crop quantity and quality occur in general if post-harvest growth 

is not controlled. Common measures for weed control are the extensive pre- and post-

emergent application of chemicals (Thorp & Tian, 2004). On the one hand extensive use 

of pesticides reduces the weed appearance, on the other hand it has negative direct and 

indirect effects on the ecosystem such as reduced soil quality or water pollution (Arias-

Estévez et al., 2008; Smith et al., 2011). Apart from the ecological aspects, farmers have 

to stick to standardized environmental regulations and laws such as the European Water 

Framework Directive (WFD) (2000/60EG) or regulations of cross-compliance. In 

European countries the usage of pesticides is strictly regulated to minimize negative 

environmental effects. For example, the German law (§12 f. IV PflSchG) prescribes the 

use of economic weed thresholds based on plants per square meter at which control is 

economically justified. Such thresholds provide valuable decision aids for weed control, 

indicating at which weed density pesticides need to be applied (Weis et al., 2008). 

However, these thresholds discount the nature of weeds growing in patches (Lamb & 

Brown, 2001). The most effective means of weed control are prevention (control prior to 

planting), early detection (within the first stages of growth) and eradication (Christensen 

et al., 2009). The concept of site-specific weed management (SSWM) in precision 

farming thus plays an important role in reducing the negative environmental effects of 

weed control. At the same time it can improve the efficiency of growing crops 

(Christensen et al., 2009). 

1.2. Methods for Site-Specific Management and Mapping 

Crop and field management in PA apply techniques and methods gathering site-

specific information. Site-specific information is geo-referenced information of spatially 

distributed environmental factors and their heterogeneity and variability (soil properties, 

nutrients, plant diseases or weed emergence) (Torres-Sánchez et al., 2013). Such 

information serves as a basis for precisely located weed control applications (Heege, 

2013). Within weed management, accurate herbicide application requires a precise 

detection and positioning of weeds. Mapping of weeds can be done manually by 

recognizing weed species in the field or indirectly by remote sensing of total plant 

coverage, leaf area index, and photosynthetic activity or plant height with sensors located 

on ground vehicles (Peteinatos et al., 2014). A series of optoelectronic, imaging, or 

distance sensors have been widely applied in agricultural studies (Mulla, 2013; Vibhute 
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& Gawali, 2013) for mapping the environmental factors such as chemical soil properties 

(Anderson, 2009; Jarmer et al., 2008; Palacios-Orueta & Ustin, 1998) and plant water 

content (Meron et al., 2010), as well as for capturing crop conditions (Jarmer, 2013; 

Lumme et al., 2008 , Tilly et al., 2014) and weed distribution (Andújar et al., 2013; Lamb 

& Brown, 2001; Torres-Sánchez et al., 2013). Based on the selective spectral absorption, 

different indices such as the normalized differenced vegetation index (NDVI (Feyaerts & 

Gool, 2001)), the excess green index (ExG (Sena et al., 2011)) or the vegetative index 

(VI, (Hague, 2006)) are usually calculated to separate soil and plants (Peteinatos et al., 

2014) for weed detection. Optical sensors are often combined with an herbicide sprayer, 

which is automatically turned on when the used index exceeds a specific threshold. 

However, the integrated value of plant and soil coverage for the whole field of view 

limits the spatial information and thus the detection of smaller weed patches. Further loss 

in classification accuracy is due to influencing factors such as changing ambient light 

conditions in the field and the need of rectification or repeated calibration in the field 

(Peteinatos et al., 2014). Weed detection can also be done by means of image processing 

methods, using infrared, multispectral, or RGB cameras to extract plant properties 

(Andújar et al., 2011; Gerhards & Oebel, 2006; Romeo et al., 2013; Weis & Gerhards, 

2007) employing color, shape, and texture features (Guijarro et al., 2011; McCarthy et al., 

2010; Pérez et al., 2000; Rumpf et al., 2012; Tellaeche et al., 2011), either taken from a 

low distance above ground mounted on agricultural vehicles or by Unmanned Aerial 

Vehicles (UAV) based remote sensing (Peña et al., 2013; Primicerio et al., 2012; Torres-

Sánchez et al., 2013; Zhang & Kovacs, 2012).  

Imaging sensors are able to provide significant results concerning the location of 

weeds and crops, but they disregard 3D geometric information like plant height. 

However, height is an important parameter for estimating the amount of herbicide, 

considering the biomass of weeds or second growths.  

1.3. LiDAR for Vegetation Analysis and Agricultural Applications 

Light detection and ranging (LiDAR), also referred to as laser scanning (LS), has 

evolved into a state-of-the-art technology for highly accurate 3D data acquisition. 

Airborne as well as ground-based systems are used to capture information about 

agricultural objects, however most recent studies use terrestrial laser scanning (TLS). 

Compared to airborne LS, the major advantages of TLS are a low-cost operation, easier 

multitemporal data acquisition, and high-density point clouds (multiple points per cm² 

possible). LiDAR technology enables a detailed geometric (high-resolution XYZ  point 

clouds and derived parameters, e.g., object height) and radiometric (e.g., strength of 

backscatter (Höfle & Pfeifer, 2007)) representation of the scanned object. Several studies 

have already indicated the potential of LS in vegetation description, for example in tree 

(Rosell & Sanz, 2012; Rosell et al., 2009; Sanz-Cortiella et al., 2011;) or grain crop 

monitoring (Höfle, 2014; Llorens et al., 2011; Lumme et al., 2008; Saeys et al., 2009) 

with a stationary or tractor-mounted scanner. Until now, LiDAR sensors in agricultural 

applications are mainly used for gathering the geometric information for, e.g., estimating 

crop height for biomass calculation or for growth monitoring (Ehlert et al., 2009; 

Hoffmeister et al., 2010; Hosoi & Omasa, 2009; Tilly  et al., 2014; Zhang & Grift , 2012;). 

Radiometric information has so far rarely been used due to calibration issues, but in 
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recent years this information has been increasingly applied for object detection (Höfle & 

Hollaus, 2010; Rutzinger et al., 2008). Its application in an agricultural context is still 

rare. Andújar et al. (2013) used LiDAR height and reflection measurements for 

vegetation detection captured at 905 nm wavelength with a detection rate of 77.7% for S. 

halepense. Similar results are demonstrated by Koenig et al. (2013) and Höfle (2014) 

using height differences in combination with the amplitude in spatial context to 

distinguish soil and plant objects.  

1.4. Hypotheses and Objectives 

From this overview we hypothesize (i) that TLS can be used for post-harvest 

growth detection and discrimination and (ii) that for a complete and correct detection of 

post-harvest growth patches in TLS data, a combined use of geometric and radiometric 

information in a local neighbourhood will  lead to better results, compared to a sole use of 

geometric information. In order to verify this hypotheses, the following objectives are 

addressed: (i) to evaluate the accuracy and performance of TLS for post-harvest growth 

detection; (ii) to assess the possibilities of radiometric information to discriminate post-

harvest growth from soil; and (iii ) to evaluate the effect of point density on post-harvest 

growth detection. The objectives were examined by applying correlation analysis and 

different classification methods of derived geometric and radiometric information of TLS 

data. 

2. Study site and Datasets 

The study was conducted with data from a harvested and grubbed winter barley 

plot (about 7 m x 66 m) with second growth of winter barley and sparsely spread weed of 

unknown species at the Julius-Kühn-Institut for Crop and Soil Science (JKI), Brunswick, 

Germany (52.288N, 10.434E). The survey was performed on 27
th
 of August 2013 two 

weeks after grubbing and four weeks after harvesting. Within the investigated crop field, 

two reference sample plots (1 m x 1 m) were captured for training and testing the 

developed methods.  

2.1. Terrestrial Laser Scanning Data 

A time-of-flight scanner Riegl VZ-400 with full-waveform online echo detection 

was used to collect data from six elevated scan positions (scanner height above ground 

~4 m) located around the field (Fig. 1). The laser scanner has a near-infrared laser beam 

(1550 nm) with a beam divergence of 0.3 mrad and a range accuracy of 5 mm at 100 m 

according to the manufacturer's datasheet (Riegl, Datasheet VZ-400). A nominal point 

spacing of 5 mm at 10 m distance was chosen for four scans and 3 mm nominal spacing 

for two scans for analysis regarding the point density. The study area was covered by a 

mean density of 28 points per 0.01 m², resulting in a point cloud of about 10.8 x 10
6
 

points in total.  

Co-registration of scan positions was performed using tie points (cylindric 

reflectors) with high reflectance and six plane surface patches (e. g. EUR-palett) placed 

around the field. Following the initial alignment of the scans, the fine registration by the 

iterative closest point (ICP) algorithm integrated into the RiSCAN PRO software results 
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in a 0.0143 m standard deviation of error distribution between the scans. To guarantee 

lowest alignment errors, only points with range <30 m were chosen for the analysis. After 

the co-registration of the single scan positions, the point cloud was exported into an 

ASCII file containing the XYZ coordinates, range [m] and signal amplitude [digital 

number DN] for each laser point. The signal amplitude was rescaled to [0,1] based on the 

known reflectance of a reference target which was captured with every scan. The 

reference target (20 x 20 cm) was made of Spectralon® with Lambertian scattering 

properties. At the scannerôs operating wavelength of 1550 nm, the nominal reflectance of 

the target was 92.5%. The target was mounted on a tripod, its center was oriented to the 

scanner, and the distance from target to scanner differed with each scan position. 

Within the investigated field, training data was manually extracted from the point 

cloud and further refined by visual comparison to the RGB images. The training data 

consists of several small samples of ground and post-harvest growth data and was used in 

the feature calculation, the correlation analysis, and the model construction. 

 
Fig. 1. Study area, covering a harvested and grubbed winter barley field with patches of 

post-harvest growth of winter barley. Scan positions and location of the two sample plots 

are given as well as an elevation profile within the field showing points of post-harvest 

growth and ground, colored by elevation. Perspective 1: panorama at scan position 5; 

Perspective 2: measuring setup for the acquisition of RGB images and hyperspectral data 

at the two sample plots.  
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2.2. Reference Data 

The point cloud based classification results were validated with 1) an independent 

classification of the 1 m² reference plots done by image analysis of high-resolution RGB 

photographs and 2) by the NDVI 705 calculated from hyperspectral data. The RGB image 

post-harvest growth detection was based on georeferenced binary images of one square 

meter and was realized using a decision tree (DT) with one rule node. The images were 

acquired perpendicular from a height of 1.5 m, with a ground resolution of 0.05 mm. Two 

threshold values (one for the red and one for the blue band of the RGB image) were used 

to classify the image with two classes: 'ground' and 'post-harvest growth'. The accuracy 

assessment of RGB image classification was based on stratified random sampling of 256 

points from the classified image, with at least 100 points per class, and the manual 

comparison of them with the original RGB image. The RGB image classification 

achieved an overall accuracy of 94.9%. The hyperspectral data of the whole field was 

captured with the Penta-Spek system developed by the JKI (Lilienthal et al., 2012; 

Lilienthal & Schnug, 2010). Compared to airborne acquisition, atmospheric and 

geometric corrections were negligible due to the proximity of sensor and ground. The 

system comprised five hyperspectral sensors (Ocean Optics Inc.) with an effective 

resolution of 46 channels at 10 nm and a minimal detection time of 3 msec. Four sensors 

were oriented groundwards and one skywards to measure the irradiation reference and to 

correct the sensors. Thus, the spectral reflections could be directly determined in the 

field. All  sensors covered the same spectral range of 400 nm to 925 nm. The four sensors 

were mounted row-wise 25 cm apart from each other and 2 m above the ground on a 

frame, each having a ground resolution of 25 cm. NDVI 705 was calculated for each sensor 

and resulted in 16 measuring points. The two reference datasets were co-registered to the 

point cloud via corresponding point pairs. 

3. Methods  

The developed workflow (Fig. 2) was based on the assumption that post-harvest 

growth is characterized by: 1) a defined vertical extent (height above ground) and a 

variation of local neighboring points (geometric criteria); and 2) differing amplitudes of 

post-harvest growth and ground (radiometric criteria). Here, the category 'ground' 

comprised bare soil and dry straw of winter barley lying on the ground, whereas weed 

and second growth of winter barley constituted the category 'post-harvest growth'.  



7 

 

 
Fig. 2. Workflow for mapping 'post-harvest growth' by using full-waveform point clouds 

of varying point density. After preprocessing of radiometric correction and feature 

calculation within a local neighborhood for the whole data, four different approaches of 

classification and model construction were applied to training data. The derived models 

were evaluated by assigning to test data and by using the classified RGB image and 

NDVI 705 derived from hyperspectral data. 

3.1. Data Preprocessing 

3.1.1. Data Cleaning: Radiometric Correction 

Data cleaning attempts to identify and remove outliers in order to correct 

inconsistencies in the data. Apart from geometric features (XYZ coordinates) the laser 

scanner gathers radiometric features (e.g. signal amplitude) from all scanned surfaces. 

The recorded signal is affected by the scanning geometry, the target properties, and 

atmospheric and sensor settings and parameters (Höfle, 2014; Kaasalainen et al., 2011). 

Scanning geometry is described by range (distance) and incoming beam incidence angle 

to the target (Kaasalainen et al., 2011), which influences the backscattered signal. For 

TLS, the distance effect seems to depend mostly on the instrument (detector effects or 

receiver optics) (Höfle, 2014; Pfeifer et al., 2008) and not entirely following the 1/R² law 

of the radar equation in near distances (< 20 m for Riegl VZ-400) as mostly valid for 

ALS (Wagner, 2010). In our case, radiometric correction aimed at removal of the range 

effect. 

First, vertical outliers in the point cloud were removed manually. A data-driven 

range correction approach was applied by estimating the range-amplitude function f(r)  

and the resulting correction factor 1/f(r) for multiplying the recorded values from field 

data (Höfle, 2014). The selected reference surface consists of a homogeneous 

0.8 x 40.0 m subset of one scan position covering dry and bare soil. Due to artificially 

managed and well understood soil conditions and mechanized harvesting, this area was 

considered sufficiently homogeneous to serve as a reference. A moving median filter of 
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amplitude with a 0.3 m overlap in range was applied to suppress small scale variations, 

e.g. due to surface roughness. Polynomial functions from degree 1 to 14 were tested as 

models for the radiometric correction. The correction function f(r)  results from the Least-

Squares (LSQ) fitting of polynomial functions with the lowest root-mean-square error 

(RMSE).  

In order to evaluate the performance of the range correction, the same reference 

target of 20 cm x 20 cm with known reflectance (Spectralon®) was placed in each scan 

position, but always at a different distance from the scanner (from 16 m to 24 m). By 

using the identical Spectralon target with known and constant reflectance, the corrected 

amplitude values should be similar for all LiDAR points on the target in each scan. The 

median amplitude was calculated for each target. Subsequently the standard deviation (in 

percentage) of all target medians was assessed as a measure of success of the radiometric 

correction. Thus, the standard deviation of all medians should be decreased strongly after 

the range correction, thus indicating the removal of the distance effect. 

3.1.2. Feature Calculation 

Based on the assumptions, the detection of post-harvest growth relies on 

geometric and radiometric features derived from XYZ coordinates and signal amplitude 

considering the local neighborhood of each laser point. To specify the amplitude 

threshold AT for the calculation of the amplitude density feature, a first exploratory 

analysis was performed by calculating statistics and distribution functions of the extracted 

training data. The local neighborhood was defined as spherical neighborhood, thus 

Euclidean metric in 3D with a fixed distance threshold (Filin & Pfeifer, 2005). Because 

of the different shapes of post-harvest growth objects, nine local neighborhood features 

were calculated with four distance thresholds (R) (0.002 m, 0.005 m, 0.02 m, 0.05 m) and 

with the derived amplitude threshold. The feature calculation results in 36 additional 

features attached to each laser point. The final feature space comprises 38 features in total 

(Tab. 1): nine features calculated with four different distance thresholds, plus the 

corrected amplitude and Rieglôs deviation. The importance of the computed features and 

their impact on the classification were assessed in the feature correlation analysis as well 

as in the model construction and model application. 

Table 1. List of single laser point features derived in local neighborhood for 

classification considering the search radius R and amplitude AT. 

 

Symbol [Unit]  Description 

A  [DN]  Corrected signal amplitude 

EW   Rieglós deviation (pulse shape of the echo signal 

compared to the pulse shape representing the so-called 

system response - area below the shape curve )  

Concerning local neighborhood:  

ER  [%] Echo ratio (ratio of number of points in 3D and in 2D) 

Adens  [%] 
Amplitude density (percentage of points with 

amplitude lower than threshold) 
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Acov  [DN]  Coefficient of variation of all amplitude values 

Amean  [DN]  Mean amplitude of all amplitude values 

Dz  [m] 
Elevation difference between the single point and the 

minimum elevation value 

StdZ  [m] Standard deviation of all elevation values  

Zdiff  [m] Range of maximum and minimum elevation value 

Nbs2D   Number of neighboring points in 2D (planimetric) 

Nbs3D   Number of neighboring points in 3D (sphere) 

 

3.1.3. Data Correlation Analysis 

To assess whether the calculated features are measuring the same construct, i.e. 

whether they are redundant, a correlation analysis was performed. The analysis evaluates 

the pairwise correlation between all features of the feature space (Tab. 1). With respect to 

the degree of correlation, three cases can be assumed: 1) high correlation as an indicator 

of redundant features (e.g. already linked in calculation), 2) high correlation of features 

whose combination describes an object characteristic and 3) low correlation as an 

indicator of independent features. The correlation and possible redundancies between 

single features were analyzed by using the Pearson's product-moment correlation 

coefficient (PCC) and the principal component analysis (PCA). 

The PCC computes the correlation between all features and produces a weight 

vector based on these correlations (Pearson, 1895). The degree of association between 

two features is given as a number between -1 (negatively correlated) and +1 (positively 

correlated). No correlation is indicated with a value equal to 0. The PCA performs a 

dimensionality reduction using the covariance matrix (Jolliffe, 2002). The procedure 

searches for k n-dimensional orthogonal vectors that can be used to represent the data 

(k Ò n) most adequately. It converts possibly correlated attributes into a set of values of 

uncorrelated features (principal components), which are ordered by decreasing 

significance.  

3.2. Classification  

The classification aimed at extracting a model that predicts the class label 'post-

harvest growth' from TLS data. Different machine learning techniques for the 

classification were tested: 1) supervised classifiers (tree induction and Naʾ ve Bayes), and 

2) unsupervised classifier (k-Means) considering the geometric features, the radiometric 

features, and a combination of geometric and radiometric features. The usage of different 

approaches on the one hand prevented the usage of classification rules derived from over-

fitted modeling of one classifier, and on the other hand substantiated the possibility of 

classifying the point cloud on the basis of different classification principles. The 

approaches were selected based on the similar application of those for surface 

classification (Alexander et al., 2010; Gerke & Jing, 2014; Pal & Mather, 2003), 

vegetation detection in airborne (Ducic et al., 2006; Höfle & Hollaus, 2010; Rutzinger et 

al., 2008; Zlinszky et al., 2012) and in terrestrial LiDAR data (Koenig et al., 2013). 
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Cluster analysis like k-Means has been used in ALS applications such as tree detection 

(Lindberg et al., 2013; Vauhkonen et al., 2012). 

Data classification for each technique was performed in two-steps: 1) the learning 

step, where the classification model was constructed based on training data, and 2) the 

classification step, where the model assigned the class labels.  

3.2.1. Model Construction 

To predict the best class label within the supervised classification, the training 

data were portioned relatively with a ratio of 0.7 by stratified sampling, based on Gini 

Index Weighting (Breiman, 2001). 70 percent of the data were used in the training sub-

process (model learning) and 30 percent in the testing sub-process (model testing).  

The advantage of tree induction lies in the straightforward handling to construct 

classifiers with no requirements in domain knowledge or parameter setting. Additionally, 

it requires no assumptions regarding distribution of input data and provides an intuitive 

way to interpret classification structure (Hansen et al., 1996). The decision tree was 

generated by recursive partitioning, using a minimal size for split of four and a minimal 

leaf size of two. As criterion for tree induction the gain ratio was chosen with minimal 

gain of 0.1 and confidence of 0.25. To prevent an over-specific or over-fitted tree, pre-

pruning with three alternative nodes for splitting was chosen. The gain ratio is a variant 

of information gain and adjusts the information gain for each attribute allowing the 

breadth and uniformity of the attribute values (Quinlan, 1986). Additionally, in the case 

of random forest (RF) analysis, the number of trees was set to 20. The precision of the 

applied RF depends on the strength of the individual classifiers and the measure of the 

dependence between them. Every tree of the RF consists of a different set of learning 

data, which can result in differences in accuracy towards the overall accuracy. The 

predominant usage of features for discrimination within the RF denotes the features' 

significance. 

The Naʾve Bayes classifier is based on a probability model and requires only a 

small amount of training data. The advantage lies in the assumption of independent 

features, whereby only the variance of the features for each class label needs to be 

determined and not the entire covariance matrix (Zhang, 2004). Laplacian correction was 

used to avoid probability values of zero. 

Unlike in classification, the class label is unknown in cluster analysis. Clustering 

groups a set of data objects into multiple clusters such that objects within a given cluster 

have high similarity, but are very dissimilar to objects in other clusters. The similarity is 

based on a measure of distance in feature space. The most fundamental and simplest 

cluster analysis is partitioning, which organizes the objects into several exclusive clusters. 

It is an effective clustering method for small-size data sets (Han et al., 2012). In this study 

we used k-Means, a centroid-based partitioning technique, to find the mutually exclusive 

clusters. With a pre-defined number of clusters (k = 2) and Bregman Divergence with 

Squared Euclidean Distance (Banerjee, 2005) as distance measure, the cluster analysis 

run with maximal 1000 iterations for one of the 100 runs of k-Means. To assess the 

feasibility of the applied k-Means, the silhouette coefficient (SC) was applied. The SC 

measures the compactness of a cluster and the separation towards other clusters 



11 

 

(Rousseeuw, 1987). For each object in the dataset, the average distance between the 

object and all other objects in the cluster was calculated. 

3.2.2. Accuracy Assessment and Model Application 

The accuracy of the resulting models was assessed by calculating precision (p), 

recall (r), Cohen's kappa (ə), and error rate (e) (Equation (1)-(4)). Precision, recall, and ə 

are better suited to the class imbalance problem, where the main class of interest (post-

harvest growth) is rare. Precision (userôs accuracy) represents the exactness, i.e. the 

percentage of tuples correctly labeled as 'post-harvest growth', whereas recall (producerôs 

accuracy) is a measure of completeness, i.e. the percentage of post-harvest growth tuples, 

which are labeled as such. The ə (Cohen, 1960) was used as a measure of the quality of 

the binary classification, representing the agreement between the two raters 'ground' and 

'post-harvest growth' within LiDAR-based classification on the one hand and between the 

two raters 'LiDAR -based classifier' and 'RGB image-based classifier' for the class of 

'post-harvest growth' on the other hand. The model with the best performance was used 

within the subsequent classification procedure. 
 

Precision
* 1

 = TP / (TP + FP) (1)  

recall
*1

 = TP / (TP + FN) (2)  

ʆ*1
 = (P(a) - P(e)) / (1 - P(e)) (3)  

error rate
*1

 = (FP + FN) / (TP + FP + FN + TN) (4)  

accuracy
* 2

 = (TP + TN) / (TP + FP + FN + TN) (5) 

 

In Equations (1-5), TP is the number of true positives, TN the number of true negatives, 

FP the number of false positives, FN the number of false negatives, P(a) is the relative 

observed percentage of agreement among the raters and P(e) is the expected percentage 

of agreement.  

3.3. Evaluation 

The evaluation of post-harvest growth detection was performed at various levels, 

involving the classifier itself as well as the comparison with the reference data of 

classified RGB image and calculated NDVI of hyperspectral data. 

3.3.1. Evaluation of the derived classification rules by reference data 

The classified point cloud was evaluated by comparison with the classified image 

of: 1) cell-by-cell error assessment; and 2) calculated total post-harvest growth area 

coverage in percent of sample plot one. For the cell-by-cell error assessment, binary 

raster maps of the classified point cloud were derived, taking the most frequent class of 

the laser points within a raster cell. The cell size was set to 0.005 m based on the average 

                                                   
1
 used for evaluation within model construction 

2
 used for evaluation with reference data 
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point distance of the point cloud. However, varying point distribution and shadowing 

effects in certain areas of the TLS data confined the comparison of rasterized coverage to 

cells that have values in the LiDAR -derived case. The accuracy (Equation 5) as a 

measure of the closeness of TLS to the RGB classification (true) was calculated. 

Furthermore, area coverage per Penta-Spek footprint was calculated from the binary 

raster maps to relate the amount of vegetation coverage with NDVI705.  

3.3.2. Evaluation of the transferability of derived classification rules and of the effect of 

point density on classification 

The transferability of derived classification rules from training data to remaining 

field data was performed by rule allocation to a second sample plot (test data) 20 m 

distant from the training data location. In order to assess the precision of the classification 

via TLS, the effect of point density on classification performance, due to different 

scanning distance, was assessed using five single scan positions located around the 

training data. For each point dataset variant, the same processing steps of feature 

calculation, correlation analysis, and model construction were performed. Due to 

decreasing point density and increasing mean point distance, the local features of single 

laser points of Tab. 1 were calculated within a search radius R of 0.02 m, 0.05 m and 

0.1 m and with derived amplitude thresholds AT per scan position (Tab. 6). 

4. Results and Discussion 

4.1. Radiometric Correction of Signal Amplitudes 

The data-driven range correction of signal amplitudes shows the lowest RMSE 

(2.1%) for a polynomial of degree seven (Fig. 3). The maximum recorded amplitude is 

reached at a distance of approximately 10 m, and decreases with distance thereafter. This 

indicates a polynomial approximation, as well as certain homogeneity of the used natural 

surfaces. Comparing the coefficient of variation of all amplitude values for all scan 

positions before and after correction, a reduction from 7.1% to 2.7% is given. The 

remaining variation can be explained by a certain roughness of the natural terrain (Höfle, 

2014).  

The evaluation of the range correction was based on one reference target with 

known and constant reflectance placed in each scan position. After the range correction, 

the calculated standard deviation of all target medians shows lower value (1.10%) 

compared to the standard deviation before the range correction (4.13%). Additionally, the 

performance was visually explored by comparing the point cloud colored by uncorrected 

and corrected amplitude values (Fig. 4). The comparison shows the successful 

elimination of the range effect. Due to higher variation, scan position three was excluded 

for further analysis. 
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Fig. 3. Polynomial function of range-amplitude dependency assessed by Least-Squares 

(LSQ) fitting to moving median values of original amplitudes derived by field data. 

 
Fig. 4. Comparison of amplitudes (a) before and (b) after radiometric correction based on 

field-derived correction function, showing scan position six. 

4.2. Feature Extraction and Correlation Analysis 

Already the corrected signal amplitude A shows a high separability between 

ground and post-harvest growth with amplitude Ò0.783 DN for post-harvest growth, 

which can clearly be seen by the colored distribution functions (DF) in Fig. 5. This 

separability is confirmed by an applied decision tree (DT) considering only the amplitude 

values. The DT defines post-harvest growth with amplitude Ò 0.767 DN with a precision 

of 94.3%. Both approaches exhibit lower signal amplitude values for post-harvest growth 
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with a slightly differing threshold. The difference between DF and DT can be explained 

on the one hand by the applied moving median in DF, resulting in a different threshold 

depending on the overlap parameter used, and on the other hand by the DT taking the 

overlapping area for distinction into account. The threshold AT derived by DT (0.767 DN) 

was used to calculate the features listed in Tab. 1. In general, the lower signal amplitude 

may be explained by the low reflectance of plants at 1550 nm. The plants' reflectance 

spectrum is, among other things, influenced by the water content which shows higher 

absorption around 1500 nm and results in lower reflectance compared to dry ground 

(Fabre et al., 2011). Dry soil as well as crop residuesô dry matter, on the other hand, are 

spectrally similar (Streck et al., 2002), and show increasing amplitude with decreasing 

moisture (Daughtry & Hunt, 2008; Whiting et al., 2004).  

 
Fig. 5. Distribution function of corrected amplitude of the different classes occurring in 

field data: (a) Harvest residues and soil; (b) ground (harvest residues and soil); (c) post-

harvest growth and (d) moving median of all classes and the resulting threshold. 

 

Correlation analysis was applied to identify the similarity of the features in the 

feature space. The features ER, Acov, and number of points in 2D and 3D show low to 

high correlation. High correlation is represented in both sides of correlation degrees: 1) 

the expected positive correlation (PCC = 0.9) between StdZ and Zdiff; and 2) negative 

correlation (PCC < -0.7) between the amplitude-based features (A, Amean) and Zdiff. 

The second group of correlations reflect the characteristics of ground and post-harvest 

growth. For example, post-harvest growth is characterized by lower amplitude values 

considering Fig. 5 and by distinct elevation differences compared to ground.  

The Gini Index Weighting as well as the features included in the calculated 

principal components can be used to predict the explanatory power of the features; the 

Gini Index as a measure of inequality and PCA as measure of the variance of features. 

The most relevant features according to Gini Index Weighting are Amean, Adens, A, 
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followed by Zdiff and StdZ (cf. Fig. 6), with higher weights for radiometric features than 

geometric features. According to the PCA, the most relevant features are the number of 

neighboring points within a 5 cm search radius and Adens. The features weighting by PCA 

shows a significance of 0.7 for Nbs2D and Nbs3D and for Adens significances of 0.4 to 

0.5. All the other features follow with a significance of less than 0.2. 

The correlation analysis underlines the potential of radiometric features as well as 

the consideration of the local neighborhood of points for distinction of ground and post-

harvest growth. Post-harvest growth tends to lower amplitude values and elevation 

differences up to 12 cm compared to ground. The results are comparable to former 

studies where Amean and the StdZ are chosen for vegetation classification (Höfle, 2014; 

Koenig et al., 2013; Rutzinger et al., 2008). 

 
Fig. 6. Feature importance by Gini Index Weighting (left) per feature group and by PCA 

(right). 

4.3. Classification 

In order to achieve the best accuracy and to test the power of the derived feature 

groups, three subsets of feature groups from the training data were chosen: 1) geometric 

features; 2) radiometric features; and 3) a combination of geometric and radiometric 

features.  

The most reliable classification is achieved by using the combination of geometric 

and radiometric features, resulting in >99% precision (Tab. 2). Adding geometric features 

leads to a small increase in precision for the unsupervised classifiers and it reduces the 

error rate by 0.7%. Both tree induction classifiers predominantly discriminate the post-

harvest growth by Adens as the first node, and the node with the largest size, and in 

subsequent order by the geometric features such as standard deviation in elevation StdZ 

(Fig 7). The most frequently used features are in the search radius of 0.02 m and 0.05 m. 

The derived amplitude thresholds of 0.772 ± 0.007 DN are comparable within the tree 

induction.  
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Fig. 7. Derived classification tree of training data, which achieved the highest precision 

from decision tree (a) and random forest (a)(b). The amount of true positives per class at 

each leaf node is given in brackets.  

 

Table 2. Results of supervised classification (precision (p), recall (r), Cohen's kappa (ə), 

error rate (e)). For random forest, the overall accuracy for 20 trees is given as well as the 

coefficient of variation of all trees in brackets. 

 

Features 
 Supervised classifier  

 Decision Tree Random Forest Naʾve Bayes  

Corrected value 

of signal 

amplitude 

p 

r 

ə 

e 

94.3% 

72.7% 

0.65 

17.8% 

93.8% (    1.2%) 

72.7% (    3.0%) 

0.65 (     0.05) 

18.0% (  19.1%) 

88.3% 

80.7% 

0.66 

16.8% 

 

Geometric 

features 

p 

r 

ə 

e 

88.1% 

95.9% 

0.80 

9.5% 

96.4% (  11.9%) 

76.8% (  27.9%) 

0.71 (     0.21) 

14.6% (  40.7%) 

81.5% 

79.3% 

0.69 

15.8% 

 

Radiometric 

features 

p 

r 

ə 

e 

99.5% 

99.4% 

0.98 

0.7% 

99.0% (    2.5%) 

99.0% (    7.8%) 

0.98 (     0.10) 

1.1% (127.2%) 

98.2% 

99.2% 

0.97 

1.5% 

 

Geometric + 

radiometric 

features 

p 

r 

ə 

e 

99.9% 

100.0% 

0.98 

0.0% 

99.0% (    6.3%) 

99.6% (  11.0%) 

0.98 (     0.19) 

0.8% (123.4%) 

98.7% 

99.7% 

0.98 

0.9% 

 

Applying the k-Means, the combination of geometric and radiometric features 

shows a weak silhouette coefficient and low precision compared to using solely 

radiometric features for the whole training dataset (SCcombined 0.4 < SCradiometric 0.7 and 

pcombined 52.4% < pradiometric 61.4%) (Tab. 3). The weaker SC of using the combination of 

geometric and radiometric features is due to small elevation differences of post-harvest 

growth and ground points.  
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Table 3. Error assessment of cluster analysis (k-Means) of labeled training data using 

subset 2 (radiometric features) and subset 3 (combined geometric and radiometric 

features). 

 

  Class Silhouette coefficient 

 

 

Post-

Harvest 

Growth  

Ground 

Range 

[min;max]  

Mean ± 

Std 

Subset 2 Cluster 1 (Ground) 57.1% 41.3% [0.01;0.85] 0.76 ± 0.14 

 Cluster 2 (Post-

Harvest Growth) 

61.4% 38.6% [0.01;0.81] 0.69 ± 0.19 

 Precision 61.4%    

 Recall 57.1%    

 Kappa 0.03    

 Error rate 47.5%    

Subset 3 Cluster 1 (Ground) 47.6% 62.2% [-0.02;0.61] 0.43 ± 0.15 

 Cluster 2 (Post-

Harvest Growth) 

52.4% 37.8% [-0.06;0.55] 0.36 ± 0.16 

 Precision 52.4%    

 Recall 63.8%    

 Kappa 0.15    

 Error rate 43.3 %    

The benefit of combining geometric and radiometric features of a local 

neighborhood to distinguish between ground and post-harvest growth is deduced from 

comparing the results and the tendency of increasing precision of the applied classifiers. 

The relevance of the local radiometric features is also reflected in the Gini Index 

Weighting and the PCA (Fig. 6). Small elevation differences of ground and post-harvest 

growth lead to a lower impact of geometric features for classification. In the case of 

higher plants, the power of geometric features increases, which was also shown in others 

studies of vegetation detection (Andújar et al., 2013; Höfle, 2014; Lumme et al., 2008). 

4.4. Evaluation with Reference Data 

The evaluation proceeded on two levels to demonstrate the potential of using 

LiDAR  data for classification: 1) cell-wise comparison and comparison of calculated area 

coverage of LiDAR and of RGB image classification and 2) calculated coverage of 

LiDAR and RGB in relation to the calculated NDVI 705 within the footprint of 

hyperspectral sensor of sample plot one. Due to varying spatial resolution and data 

models of different datasets, coverage raster maps were computed and compared.  

4.4.3. Comparison with RGB Image Classification 

The calculated coverage of post-harvest growth of the sample plot varies from 

3.6% to 19.2% for TLS based classification, while the RGB image analysis shows 

coverage of 5.1% (Tab. 4). The best match in coverage is reached by Naʾve Bayes and 

tree induction (Fig. 8b-d), whereas the k-Means overestimates the post-harvest growth 
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coverage using the combination of geometric and radiometric features. The small 

overestimation in Naʾve Bayes and tree induction results from considering the local 

neighborhood and its effect within the transition area of post-harvest growth and ground. 

In comparison to the k-Means, Naʾve Bayes and tree induction have detected the majority 

of the post-harvest growth patches with higher precision (Tab. 5). Applying only 

radiometric features, k-Means achieves comparable results (Fig. 8e) and a coverage value 

of 3.6%. A cell-by-cell error assessment of LiDAR-derived classes and classes derived by 

image analysis yields a high precision of >77% (Tab. 5), considering only cells with a 

label in LiDAR maps. The cell-by-cell error assessment of LiDAR and the RGB image 

can only be used to some extent due to misclassification in the RGB classification 

process or due to effects caused by downscaling the resolution of the RGB image. The 

calculated coverage per defined area in contrast provides a good indication of the amount 

of post-harvest growth. 

The transferability of the derived classification rules to the whole field can be 

seen in the test data of another sample plot 20 m distant from the training data. A 

comparison of the classified point cloud and the corresponding RGB image (Fig. 9) 

shows agreement with the allocation of small post-harvest growth patches.  

 
Fig. 8. Classified sample plot 1 (1m²): (a) RGB image; (b) classified by DT; (c) classified 

by RF; (d) classified by Naʾve Bayes analysis using geometric and radiometric features; 

(e) classified by k-Means using radiometric features and (f) classified by RGB.  

 


