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Abstract

In precision agriculturedetailed geoinformation on plant and soil properties
plays an important role e.g., in crop protectionor the application of
fertilizers. This paper presents a comparative classification andbygmst
harvest growth detection using geometric and radiomefp@int cloud
features of terrestrial laser scannin@lLS) data considering the local
neighborhood of each poinRadiometric correctiorof the TLS datawas
performedvia an empiricalrangecorrection functio derived froma field
experiment. Thereafter, the corrected amplitude and kleahtionfeatures
were explored regarding their importance for classificationFor the
comparisont r ee i nduct i,amk-Medrsdenved clBssifiers s
were testedfor different point densitieto distinguishbetween ground and
postharvest growthThe classification performanogas validatedagainst
highly detailed RGB referenceimages andthe red edge normalized
difference vegetation index (NDX%), derived from a hyperspectral sensor
Using both geometric and radiometric features, we actiavprecision of
99%with thetree induction. Compared the reference image classification,
the calculatedpostharvestgrowth coverage mapeache an accuracyof
80%. RGB and LiDARderivedcoverage shoed a polynomial correlation

to NDVI;o5 of degree twowvith R2 of 08 and 0.7 respectivelyLarger post
harvestgrowth patcheq> 10x 10cm) could already be detected by a point
density of 2pts/0.01m2. The results indicatea high potential of
radiometric andyeometricLIDAR point cloudfeatures fotheidentification

of postharvest growthusing tree induction classification. The proposed
technigue can potentially be applied over larger areas using lerehic
mounted scanners
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1. Introduction
1.1.Importance of PosHarvest Growth Management

Detection and antrol of postharvest growth weed and second growtlare
important fielas of precision agriculture (PAjWeis et al, 2008. In most cropspost
harvest growthnegatively influence yields because of thadditional competition for
nutrients, waterand light or due to msects and diseasagttling downwithin post
harvest growth(Zimdahl, 2013. In case of second growthuch problemsare due to
seedsof low quality, which fall to the groundas a result obad weather conditiaand
delayedharvest or due to thecultivation oftransgenic cropgn combination with less
tillage. Depending on the crop, seeds can be germinable for many years and aitheenc
growing cropsAlthough these effectandthe countermeasuregepend stronglyn crop
and weedspedes,lower crop quantity and qualitypccurin generalf postharvest growth
is not controlled Common measures for weed control #re extensive preand post
emergent application of chemicdlBhorp & Tian, 2009. On the one hand extensiuse
of pesticidegeduceshe weed appearancen the other hand it has negative direct and
indirect effectson the ecosystersuch ageducedsoil quality or water pollution(Arias-
Estévezet al, 2008 Smith et al., 201)1 Apart fromthe ecological aspects, farmers have
to stick to standardizednvironmental regulatiorsnd lawssuch as the European Water
Framework Directive (WFD) (2000/60EG) or regulations of crocmsipliance In
European countries the usage of pesticidestrictly regulated to minimize negative
environmentaleffects For examplethe Germanlaw (812 f. IV PflISchG)prescribes the
use of economic weed thresholds based on plants per squareamefgch control is
economically justifiedSuch thresholds provide vallaldecision aids for weed control,
indicating at which weed density pesticides need to be apfidels et al., 2008)
However, these thresholds discount the nature of weeds growing in pafiches &
Brown, 200]). The most effective means of weed conai@ preventiorfcontrol prior to
planting) early detectiorfwithin the first stages of growttgnd eradicatiofChristensen
et al, 2009) The concept ofsite-specific weed managemen{SSWM) in precision
farming thus plays an important role irreducingthe negative environmental effeat$
weed control. A the same timedt can improve the efficiency of growing crops
(Christenseret al, 2009.

1.2. Methods for Sit&pecific Management and Mapping

Crop and field management in Rpply techniqgues and methodsthering site
specific information. Sitespecific informationis georeferenced information of spatially
distributed environmental factors and their heterogeneity and variability (soil properties,
nutrients, plant diseases or weed emerger(@®resSantiez et al, 2013. Such
information serve asa basis forprecisdy located weed controlapplications(Heege,
2013. Within weed managemengccurate herbicide application requiresa precise
detection and positioning of weedblapping of weeds can be domeanualy by
recognizing weed species in the field or indirectly deynote sensingof total plant
coverageleaf area indexandphotosynthetic activity or plant heighith sensordocated
on ground vehiclegPeteinatoset al, 2014. A series ofoptoelectonic, imaging or
distance sensorsave been widely applied in agricultural studi@dulla, 2013 Vibhute
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& Gawali, 2013 for mapping the environmental factors suchchemicalsoil properties
(Anderson, 2009J)armeret al, 2008 PalaciosOrueta& Ustin, 1998 and plant water
content(Meron et al, 2010, as well asfor capturing crop conditiongJarmer, 2013;
Lummeet al, 2008, Tilly et al., 2014 andweed distributior{Andujaret al, 2013;Lamb

& Brown, 2001;TorresSanchezt al, 2013. Based orthe selective spectral absorption,
different indices such a$fenormalized differenced vegetation ind@DVI (Feyaerts&
Gool, 2001), the excess greeimdex EXG (Senaet al, 2011) or the vegetativeindex
(VI, (Hague, 200p areusually calculated to separate soil and EdqReteinatoset al,
2014 for weed detectionOptical sensors areften combined withan herbicidesprayer,
which is automatically turned on when thised indexexceeds a specific threshold.
However, he integrated value oplant and soilcoverage for the whole field of view
limits the spatial information and thus the detection of smaller weed pakaiéiser loss
in classification accuracis due toinfluencing factors such ashanging ambient light
conditions inthe field and the need of rectification or repeated calibration in the field
(Peteinatos et al., 2014)eed detectioran also be done by meansimige processing
methods, using infrared, multispectralor RGB camerasto extract plant properties
(Andujar et al., 2011; Gerhards & Oebel, 208&meoet al, 2013;Weis & Gerhards
2007 employingcolor, shapgand texture featurg&uijarro et al., 2011; McCarthy et al.,
2010; Pérez et al., 200Bumpfet al, 2012;Tellaecheet al, 201J), either takerfrom a
low distance above ground mounted on agricultural vehiclesyddnmannedAerial
Vehicles (UAV) based remote sensiiiBenaet al, 2013;Primicerio et al., 201ZTorres
Sanchezt al, 2013;Zhang& Kovacs 2019.

Imaging sensors are able to provide significant results concerning the location of
weeds and crops, buhey disregard 3D geometricinformation like plant height
However height is an important parameter foestimating the amount of herbicide
considering the biomass of weeds or second growths

1.3. LIDAR for Vegetation Analysis and Agricultural Applications

Light detection and ranging (LiDARgIso referredo as laser scanning (LS), has
evolved into a stateof-the-art technology for highly ecurate 3D data acquisn.
Airborne as well as groundased systems are used to capture informagibout
agricultural objectshowevermost recent studies use terrestrial laser scanning (TLS).
Compared to airborne LS, theajor advantages ofLS are alow-costoperation,easier
multitemporaldata acquisition and high-density point clouds(multiple points per cén
possible) LIDAR technology enables a detailed geomethgh-resolutionXYZ point
clouds and derived parameters, eapject height) and radiometric (e.g., strength of
backscatte(Ho6fle & Pfeifer, 2007) representationf the scanned objeckeveral studies
havealready indicate the potential of LSn vegetation descriptigrfor examplein tree
(Rosdl & Sanz 2012;Rosell et al., 2009SanzCortiella et al, 2011) or grain crop
monitoring (H6fle, 2014; Llorenset al, 2011;Lummeet al, 2008;Saeyset al, 2009
with a stationary or tractemountedscanner Until now, LIDAR sensors in agricultural
applications are mainly used for gating the geometric informatiofor, e.g, estimating
crop heightfor biomasscalculation or for growth monitoring (Ehlert et al., 2009;
Hoffmeister et al., 2010; Hosoi & Omasa, 2008ty et al, 2014 Zhang& Grift, 2012).
Radiometric information haso far rarely been used due to calibration issues, but in
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recent years this information has been increasingly applied for object detection &Hdfle
Hollaus 201Q Rutzingeret al, 2009. Its applicationin an agriculturalcontextis still
rare Andujar et al. (2013 used LIDAR height and reflection measurements for
vegetation detection captured at 908 wavelengthwith a detection rate of 77.7% f&.
halepenseSimilar results are demonstrdtey Koenig et al. (2013 and Hofle (2014)
using height differencesn combination with theamplitude in spatial context to
distinguishsoil andplant objects

1.4. Hypotheses and Objectives

From this overview wehypothesize(i) that TLS can be used forpostharvest
growth detection and discrimination and (that for a complete and correct detection of
postharvestgrowth patchesn TLS data, a combined use of geometric and radiometric
information in a local neighbourhoadll lead to better results, compared to a sokeaifs
geometric informationin order to verify this hypotheset)e following objectives are
addressed(i) to evaluate the accuraand performance of TL®r postharvestgrowth
detection; (ii)to assess the possibilities of radiometric informatiomiscriminatepost
harvestgrowth from soil; and (i) to evaluate the effedf point density orpostharvest
growth detection.The objectives were examined by applying correlation analysis and
different classification methods of derived geometric atllametric information of TLS
data.

2. Study site andDatasets

The study was conductesith data froma harvested and grubbed winter barley
plot (about 7m x 66 m) with second growtlof winter barleyand sparsely spread weefl
unknown specieat theJuliusKihn-Institut for Crop and Soil Scienad@Kl), Brunswick,
Germany(52.288N, 10.434E)The survey was performed on'2@f August 2013two
weeks after grubbing and four weekfser harvestingWithin the investigatedropfield,
two referencesample plots (1 mx1m) were captured fortraining and testing the
developed methal

2.1. Terrestrial Laser Scanning Data

A time-of-flight scanner Riegl VZ00 with fullwaveform online echo detection
wasusedto collect data from six elevated scan ipioss (scanner height above ground
~4m) located around the fiel@ig. 1). The laserscannehas a neainfrared laser beam
(1550nm) with a beam divergence of \M8ad and a range accuracy ofmsn at 1@ m
according tothe manufacturer's datashe@®iegl, Datasheet VZ00). A nominal point
spacing of 5mm at 10m distance was chosen for four scans amin8nominal spacing
for two scandor analysis regarding the point densitihe study areavascoveredby a
meandensity of 28 points pe®.01 m2, resulting in apoint cloud of about 10.8 10°
points in total.

Coregistration of scan positionsas performed using tie points (cylindric
reflectors) with high reflectancand six plane surfacgatcheqe.g. EURpalett) placed
around the fieldFollowing theinitial alignment of the scanshefine registation by the
iterative closest poiniCP) algorithmintegrated intahe RiISCAN PRO software results
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in a 0.0143m standard deviation of errdalistribution between the scan3.o guarantee
lowest alignmenterrors, onlypoints with range30 m werechosen for the analysiéfter
the coregistration ofthe single scan positionshe point cloudwas exportedinto an
ASCII file containingthe XYZ coordinates range [m]and signal amplitude [digital
number DN for each laser poinfThe signal amplitudesasrescaled to [(1] based orthe
known reflectance of a reference targehich was captured with every scanhe
referencetarget (20« 20cm) was made of Spectralon® withambertian scattering
properties. At t he scannrmmtbesnonuinaleeflectancenof wa v
the targetwas92.5%. The target was mounted on a tript&lcenterwas oriented to the
scannerand thedistancefrom targetto scannediffered with each scan position

Within the investigated field, training data was manually extrafttad the point
cloud and further refined by visual comparison to the RGB images. The training data
consists okeveralsmall samples of ground apdstharvestgrowth daa andwasused in
the feature calculation, the correlation analyaisl the model construction.
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Fig. 1. Study area, covering a harvested and grubbed winter barley field with patches of
postharvest growtlof winter barley Scan positions and location of the two sample plots
are givenas well asan elevationprofile within the field showing points giostharvest

growth and groundcolored byelevation Perspective 1: panorama at scan position 5;
Perspective 2: measuring setup for the acquisition of RGB images and hyperspectral data
at the two sample plots.



2.2. ReferencéData

The point cloudbasedclassificationresultswerevalidatedwith 1) an independent
classificationof the 1m?2 reference plotdone by image analysis bfgh-resolution RGB
photographs&nd 2) bythe NDVIygs calculated fromhyperspectral data. THRGB image
postharvestgrowth detectionwas basedon georeferencetinary imagesf one square
meter andwasrealized using a decision tree (DT) with one rule ndde imagesvere
acquiredperpendicular frona height ofLl.5m, with aground resolutiomf 0.05mm. Two
threshold values (one for the red and one for the ldunel of theRGB image)wereused
to classify the image with two classeground and ‘postharvestgrowth. The accuracy
assessmerdf RGB image classification wdmsed on stratified random sampling of 256
points from the classified imagewith at least 100 points per classnd themanual
comparisonof them with theoriginal RGB image. The RGB image classification
achieved aroverall accuracy of 8.9%. The hyperspectral dataf the whole fieldwas
captured with the Pent8pek system devabed by the JKI (Lilienthal et al, 2012
Lilienthal & Schnug, 2010) Compared to airborne acquisition, atmospheric and
geometric correctionsvere negligible due to the proximity of sensor and grounbde
system comprisal five hyperspectralsensors(Ocean Optics Inc.) with an effiae
resolution of 46 channels 40 nm and a minimal detection time ofh#sec Four sensors
wereorientedgroundward and one skyward® measue the irradiation referencandto
correctthe sensorsThus, the spectral flections ould be directly determined in the
field. All sensorgoveredthe samespectral range of 400m t0925 nm. The four sensors
were mounted rovwise 25cm apartfrom each othemand2 m abovethe groundon a
frame eachhaving a ground resolution @6 cm. NDVI;os wascalculated for each sensor
and resukdin 16 measuring point3.hetwo referencalatasets were eeegisteredo the
point cloudvia corresponding point pairs

3. Methods

The developed workflowFig. 2) wasbased on the assumption thpistharvest
growth is characterized by: 1 defined vertical extent (height above groundand a
variation of local neighboring points (geometric criteria); @dliffering amplitudes of
postharvest growthand ground (radioratric criteria). Here, the category'ground
comprisel bare soil and dry straw of winter barley lying on the groumidereasweed
and second growtbf winter barleyconstitute the categorypostharvest growth
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Fig. 2. Workflow for mappingpostharvestgrowth by using fullwaveform point clouds

of varying point density. After preprocessing of radiometric correction and feature
calculation within a local neighborhood for the whole data, four different approaches of
classification and model constructievereapplied to training data. The derived models
were evaluated by assigning to test data and by uiegclassified RGB image and
NDVI-os derived from hyperspectral data.

3.1.Data Preprocessing
3.1.1. Data CleaningRadiometric Correction

Data cleaningattemps to identify and removeoutliers in order to correct
inconsistenciesn the data Apart from geometric features (XYZ coordinates) the laser
scanner gdiers radiometric features (e.g. signal amplitude) from all scanned surfaces.
The recorded signal is affected by teeanning geometry, the target properties, and
atmospheric andensor settings anghrametergHofle, 2014;Kaasalaineret al, 2011J).
Scanning geometry is described by range (distance) and incdmeeng incidence angle
to the targetKaasalaineret al, 2011) which influencesthe backscattered signal. For
TLS, the distance effect seems to depend mostly on the instrdetettor effector
receiver opticsjHofle, 2014 Pfeiferet al, 200§ and not entirely following th&/R2law
of the radar equation in near distance2@m for Riegl VZ-400) as mostly valid for
ALS (Wagner, 201Q)In our case, radiometric correction aimed at remafahe range
effect

First, vertical outliers in the point cloud were removed manuallydadadriven
range correction approackasapplied by estimating the rangenplitude functionf(r)
and the resulting correction factaff(r) for multiplying the recorded values from field
data (Hofle, 2019. The selected reference surface consists of a homogeneous
0.8x40.0 m subsetof one scan position covering dry and bare.ddile to artificially
managed and well understood soil condisiand mechanized harvesting, this area was
considered sufficiently homogeneous to serve as a referanemving mediarfilter of
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amplitudewith a 0.3 m overlapin rangewasappliedto suppress small scalariations,
e.g. due to surfaceughnessPolynomial functions from degree 1 to Wretestedas

models for the radiometric correctiohhe correction functiof(r) results from thd_east

Squares(LSQ) fitting of polynomial functions with the lowest remteansquare error
(RMSE).

In order toevduatethe performance of the range correction, the same reference
target of 20cmx 20cm with known reflectanceSpectralon®) was placed in each scan
position, but alwaysat adifferent distancdrom the scanneffrom 16m to 24m). By
using theidentical Spectralon target with known and constant reflectance, the corrected
amplitude values should t=milar for all LIDAR points on the target in each scan. The
median amplitudevas calculated for each targetiliSsequently the standard deviation (in
percentag) of all target mediansas assessed asneasure of success of the radiometric
correction Thus, the standard deviation of all medians should be decrstasadlyafter
the range correctignhus indicating the removal of the distance effect.

3.1.2. Feaure Calculation

Based o the assumptionsthe detection ofpostharvest growthrelies on
geometric and radiometric features dedvieom XYZ coordinatesand signal amplitude
considering thelocal neighborhoodof each laser pointTo specify the amplitude
threshold A for the calculation of the amplitude density featuaefirst exploratory
analysiswas performed bgalculating statistics and distribution functionglod extracted
training data The local neighborhoodwas defined asspherical neighborhood, thus
Euclidean metric in 3D with a fixed distance thresholdilin & Pfeifer, 2009. Because
of the different shapes gbostharvestgrowth objectshine local neighborhooteatures
werecalculated withfour distance threshold&} (0.002m, 0.005m, 0.02m, 0.05m) and
with the derived amplitude threshaldhe feature calculation results ir6 &dditional
features attached to each laser pdiie final feature spaceomprise<38 featuresn total
(Tab. 1): nine featurescalculated with fourdifferent distance thresholdsplus the
corrected amplitude and Riégldeviation.The importance of theomputedfeatures and
their impact orthe classification were assessed in the feature correlation analysis as well
as in the modeconstruction and model application.

Table 1. List of single laser point features derived in local neighborhood for
classificationconsidering the search radiRend amplitude\r.

Symbol  [Unit] Description
A [DN] Corrected signal amplitude
EW Riegl 6s deviati on (pul

compared to the pulse shape representing treakbed
system responseaarea below thehape curve )

Concernindocal neighborhood:
ER [%0] Echo ratio(ratio of number of points in 3D and in 2D

Amplitude density (percentage of points wi

0,
Adens %] amplitude lower than threshgld



Acov [DN] Coefficient of variatiorof all amplitude values
Amean [DN] Mean amplitudef all amplitude values
Elevationdifference between the single point and -

bz (m] minimumelevationvalue

StdZ [m] Standard deviation of allevationvalues

Zdiff [m] Range of maximum anainimumelevationvalue
Nbs2D Number of neighboring points in 2(planimetric)
Nbs3D Number of neighboring points in 3@phere)

3.1.3. DataCorrelation Analysis

To assess whether the calculated features are measuring the same construct, i.e.
whether they are redundant, a correlation analysis was performed. The analysitesva
the pairwise correlation between all features of the feature space (Tab. 1). With respect to
the degree of correlatiothreecases can be assumed: 1) high correlatioanasdicator
of redundantfeatures (e.g. already linked in calculation), 2) high correlatiofeatures
whose combination describes an object characteratid 3) low correlation asan
indicator of independent featureJhe correlation and gssible redundanciedetween
single feaures were analyzed by usingthe Pearson's produstoment correlation
coefficient (PCChrndthe principal component analysis (PCA)

The PCCcomputes the correlation betweal featuresand produesa weight
vector based on these correlatiqgiiearson18%). The degree of association between
two features is given as aimber betweenl (negatively correlateddnd +1(positively
correlated) No correlation isindicatedwith a value equal to 0 The PCAperformsa
dimensionality reduction using the covarianeetrix (Jolliffe, 2002) The procedure
searches fok n-dimensional orthogonal vectors that can be used to represent the data
(k On) most adequatelyit converts possibly correlated attributes into a set of values of
uncorrelated featureqprincipal compnenty, which are ordered by decreasing
significance.

3.2.Classification

The classificatioraimed at extracting a modeihat predics the class labepost
harvest growth from TLS data Different machine learning techniquefer the
classificationweretested 1) supervised classifiertréeinduction andNa've Bayes), and
2) unsupervised classifiek-Mean3 considering theggeometric featwas,the radiometric
featuresanda combination of geometric and radiomefeaturesThe usage of different
approachesn the one hangdreventedheusageof classification rulederivedfrom over
fitted modelingof one classifierand on the other harslibstantiate the possibilityof
classifying the point cloudon the bass of different classification princigs. The
approacheswere selected based omhe similar application of thosefor surface
classification (Alexander et al, 2010; Gerke & Jing, 2014; Pal & Mather, 2003,
vegetation detection in airborrfBucic et al, 2006; H6fle& Hollaus, 2010; Rutzingeet
al,, 2008; Zlinszkyet al, 2012 and in terrestriaLIDAR data (Koenig et al, 2013)
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Cluster analysisike k-Meanshas been used in ALS applications such as tree detection
(Lindberget al, 2013;Vauhkoneret al, 2012)

Data classificatiorior eachtechniquewasperformed in twesteps: 1) the learning
step, where the classification modehs constructedbased on training datand 2) the
classification step, where the modeisigredthe class labsl

3.2.1. Model Construction

To predictthe bestclass labelwithin the supervised classificatipthe training
datawere portionedrelatively with a ratio of 0.7 by stratified sampling, based on Gini
Index Weighting(Breiman, 2001)70 percent of the dataereused inthe training sub
process (model leaing) and30 percentn thetesting subprocess (model testing).

The advantage dfee inductionlies in thestraightforwardhandling to construct
classifiers with no requiremenits domain knowledge or parameter settiAglditionally,
it requires no assumptions regarding distribution of input data and provides an intuitive
way to interpretclassification structurdHansenet al, 1996. The decision treavas
generated by recursive paidining, using a minimal size for §p of four and a minimal
leaf size oftwo. As criterion for tree induction the gain ratiaschosen with minimal
gain of 0.1 and confidence of 0.Zbo prevent an ovespecific or oveffitted tree, pre
pruning withthreealternative nodes for splittinggaschosen.The gain ratio is a variant
of information gainand adjusts the information gain for each attribute allaythe
breadth and uniformity of the attribute valu€uinlan, 198%. Additionally, inthe case
of randbm forest(RF) analysis, the number of treemsset t020. The precision of the
appliedRF depends on the strength of the individual classifiers and the measure of the
dependence between them. Every tree of the RF consists of a different set of learning
data which can result in differences in accuramwards the overall accuracy. The
predominant usage of features for discrimination within the RF denotes the features'
significance.

TheNa’ v e Bay eisbased camprobalilityenodeland requiresonly a
small amount of training data. The advantage Ireshe assumption of independent
features wherebyonly the variance of the features for eadhsslabel need to be
determined and not the entire covariance mg#hang, 2004 Laplacian correctionvas
used to avoid probability values of zero.

Unlike in classification, the class label is unknown in cluster anal@fistering
groups a set of data objects into multiple clussarshthat objects within given cluster
have high similarity, but are veissimilar to objects in other clustef®he similarity is
based on a measure of distancefeature spacelhe most fundamental and simplest
cluster analysis isaptitioning, which organizes the objects into several exclusive clusters
It isan effective clustering method for smalke data set@ianet al, 2012. In thisstudy
we usé k-Means, a centrokdasedpartitioning techniqueto find the mutually exclusive
clusters.With a predefined number of clusterlk = 2) and Bregman Diverger with
Squared Euclidean Distan¢Banerjee, 200bas distanceneasure, the cluster analysis
run with maximal 1000 iterations for one of the 100 runskdfleans.To assess the
feasibility of the appliek-Means, the silhouette coefficient (S@asapplied The SC
measures the compactness of a cluster and the separation towards other clusters
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(Rousseeuw, 1987 For each object in the dataset, the average distance between the
object and all other objects in the clustexscalculated.

3.2.2.Accuracy Assessment aktbdel Application

The accuracy of the resulting modelss assessed bgalculatingprecision(p),
recall(r), Cohen's kappép), and error ratée) (Equation (1)(4)). Precisionrecall anda
are better suited to the class imbakpcoblem, where the main clas$ interest(post
harvest growth is rare.Precision( u s er 0 s repesents thecexgctness. the
percentage of tuplesorrectlylabeled aspostharvest growth whereasrecall pr oducer 0's
accuracy)s a measure afompleenessi.e. the percentage gfostharvest growthuples
which are labeled as sucfihe s (Cohen, 1960asused as a measure of the quality of
the binary classification, representing tngreement between the two raters 'ground’ and
‘postharvestgrowth within LIDAR -based classificatioon the one handndbetween the
two raters'LIDAR -based classifierand 'RGB imagebased classifierfor the class of
'postharvest growthon the other handrhe model with the best performansasused
within the subsequent classification procedure.

Precision' = TP / (TP + FP) )

recall* = TP / (TP + FN) (2)

[ =(P(a)-P(e) / (1- P(e)) ®3)

error raté* = (FP + FN) / (TP + FP #N + TN) (4)
accuracy’= (TP + TN /(TP + FP + FN + TN) (5)

In Equationg(1-5), TP is the number of true positives, TN the number of true negatives,
FP the number of false positivdsN the number of false negativd¥a) is the relative
observed percentage of agreement among the raterB(ahid the expected percentage
of agreement.

3.3. Evaluation

The evaluation of posharvest growthdetectionwasperformed at various levels,
involving the classifier itself as well as the comparison with the reference data of
classified RGB image and calculated NDVI of hyperspectral data.

3.3.1. Evaluation of the derived classification ruibygeference data

The dassified point cloudvasevaluated by congrison withthe classified image
of: 1) celtby-cell error assessment; and @lculatedtotal postharvest growtharea
coveragein percentof sample plot oneFor the celby-cell error assessmenbinary
raster maps of the classified point clowdre derived, taking the most frequent class of
thelaser pointswithin araster cell The cell sizevasset to 0.009n based on the average

! used for evaluation within model construction
2 used for evaluation with reference data
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point distance of the point cloutHowever varying point distribbtion andshadowing
effectsin certain areas of the TLS datanfined the comparison of rasterized coverage to
cells that have values ithe LIDAR-derived caseThe accuracy(Equation 5)as a
measure of the closeness ®fLS to the RGB classification (true)was calculated.
Furthermore area coverage per Pentapek footprint was calculated from the binary
raster maps teelate the amount of vegetationveragewith NDVIgs.

3.3.2. Evaluation of the transferability of derived classifion rulesand of the effect of
point density on classification

The transferabilityof derived classification rulesom training data to remaining
field datawas performed byrule allocation toa second sample pldtest data)20 m
distart from thetraining datdocation In order to assess the precision of the classification
via TLS, the effect of point density on classification performance, due to different
scanning distancewas assessed using five single scan positions located around the
training data For each point dataset varianhe same processing steps of feature
calculation, correlation analysisand model constructiorwere performed. Due to
decreasing point density and increasing mean point distance, the local fedtsirege
laser pants of Tab.1 were calculated within a search radi&sof 0.02m, 0.05m and
0.1 m and with derived amplitude thresholdsper scan position (Tab).

4. Resultsand Discussion
4.1. Radiometric Correction of Signal Amplitudes

The datadriven range correction of signal amplitudes shahelowest RMSE
(2.199 for a polynomial of degreseven(Fig. 3). The maximunrecordedamplitude is
reached a& distance oépproximatelylO m, anddecreasewith distancethereafterThis
indicaes apolynomial approximatiomas well as certain homogeneity of the used natural
surfaces.Comparing the coefficient of variation @il amplitude valuesfor all scan
positions before and after correctipra reduction from 7.1% to 2.7%s given The
remaining variation can be explained by a certain roughness of the natural (te e,
2014).

The evaluation of the range correction was based on one reference target with
knownand constanteflectance placed in each scan position. After the rangeatmn
the calculated standard deviation all target medians shows lower value (B4
compared to the standard deviation before the range correction (4 A@&t)onally, the
performancewvasvisualy exploredby comparingthe point cloudcoloredby uncorrected
and corrected amplitude valug$ig. 4). The comparison shows thsuccessful
elimination of therangeeffect Due to higher variation, scan position threas excluded
for further analysis.
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Fig. 3. Polynomial function of rangemplitude dependency assessedLiBastSquares
(LSQ) fitting to moving median values of original amplitudes derived by field data.

a) Uncorrected

b) Field-Corrected
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Fig. 4. Comparison of amplitudes (a) before @ndafter radiometric correctiobased on
field-derived correction functiorshowing scan position six.

4.2. FeatureExtractionand Correlation Analysis

Already he correctedsignal amplitudeA shows ahigh separability between
ground andpostharvest growthwi t h  a mp | i DNufdr postOedvest @,
which can clearly be seenby the colored distribution function¢DF) in Fig. 5. This
separability isconfirmed byan applieddecision treeT) considering only the amplitude
values The DT definegpostharvest growttwi t h a m®.76v DNuwithea p@cision
of 94.3%. Both approachesxhibit lower signal amplitude valuésr postharvest growth
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with a slightly differing thresholdThe differencebetween DF and DTan be explained
on the one hand by the applietbving mediann DF, resulting ina different threshold
depending on theverlapparameterused and on the other hand by the DT taking the
overlapping area fadistinction into account he thresholdhr derived by DT(0.767 DN)
wasused to calculate the featurested in Tab 1. In general, théower signal amplitude
may be explained bythe low reflectance of plants at 15%0n. The plantsreflectance
spectum is, among otherthings, influenced by thewater content which shows higher
absorption around500 nm and results in lower reflectance compared to dry ground
(Fabre et al., 2011Pry soil as well axropresidueédry matter on the other handre
spectrally similar(Streck et al, 2002, and show increasingmplitudewith decreasing
moisture(Daughty & Hunt, 2008 Whiting et al, 2004)

a) Harvest Residues and Soil

Frequency

60

b) Ground

I Harvest Residues |

B Soil

0.75 0.80 0.85

¢) Post-Harvest Growth

60

50

0.75

0.80 0.85

d) Moving Median

- | Post-Harvest | {
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40
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Ground

30
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0.80 0.90

Amplitude [0..1]

0.90
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0.80
Amplitude [0..1]
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Fig. 5. Distribdion function of corrected amplitude of the different classes occurring in
field data: (a) Harvest residues and soil; (b) ground (harvest residues and s@dst(c)
harvest growtland (d) moving median of all classes and the resulting threshold.

Correlation analysis was applied to identify the similarity of the features in the
feature spacerl he featuresER, Acov, and number of points in 2D and 3D shtow to
high correlation.High correlation is representeqd both sides of correlation degrees: 1)
the expected positive correlation (PCC = 0.9) between StdZ and Zdiff, and 2) negative
correlation (PCC <0.7) between the amplitud®wmsed features (A, Ameaahd Zdiff.

The second group of correlations reflect the characteristics of ground andapeesst
growth. For example postharvest growthis characterizedy lower amplitude values
considering~ig. 5 andby distinctelevationdifferences compared to ground.

The Gini Index Weighting as well as the features included in the caldulate
principal components can be used to predict the explanatory power of the fetitares
Gini Index asa measure of inequality and PCA as measuréhefvariance of features.
The most relevant featuresccording to Gini IndeXWeighting are Amea, Adens A,
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followed by Zdiff and StdZ(cf. Fig. 6), with higher weightdor radiometric featurethan
geometric featuresiccording to the PCA, the mostlevant featureare the number of
neighboring points withim 5 cm search radius amfliens The features weightingy PCA
shows a significance of 0.7 fdtbs2Dand Nbs3Dand for Aqens Significances of 0.4 to
0.5.All the other features follow with signficanceof less than 0.2.

The correlation analysisnderlines the potential of radiometric features as well as
the considerationf the local neighborhood of pointer distinctionof ground andoost
harvest growth Postharvest growth terglto lower amplitude valuesand elevation
differencesup to 12cm compared to groundThe results are comparable tormer
studes whereAneanand theStdZare chosen fowegetationclassification(Hofle, 2014;
Koeniget al, 2013;Rutzingeret al, 2008.

Gm1 Inclex Wclghtm g Principal Component Analysis
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Fig. 6. Feature importance by Gini Index Weighting (left) per feature group and by PCA
(right).

4.3. Classification

In order to ahiewe the best accuracy arnd testthe power othe derived featte
groups, three subsets of feature groups ftbetraining datawerechosen: 1) geometric
features; 2) radiometric features; and&)combination ofgeometricand radiometric
features.

The most reliable classification is achieved by using the combination of geometric
and radiometric featurgsesulting in 9% precision(Tab. 2).Adding geometric features
leads to a small increase in precision the unsupervised classifieandit reduces the
error rateby 0.7%. Both tree induction classifieqgredominantly discriminatéhe post
harvest growthby Agens as the first node and the node with the largest sizand in
subsequent order by the geometric featwesh asstandard deviation ielevationStdZ
(Fig 7). The most frequently used features are in the search radius ahG@#a 0.05m.
The derived amplitude threshaldf 0.772+ 0.007 DN are comparablevithin the tree
induction.
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Fig. 7. Derived classification tree of training datehich achievedhe highest precision
from decision tree (a) and random forest (a)(b). The amoiuintie positives per class at
each leaf nodes given in brackets.

Table22Resul ts of supervised classification (|
error rate (e)). For random forest, the overall accuracy for 20 iseggenas well as the
coefficient of variation of all trees in brackets.

Supervisedclassifier

Features Decision Tree Random Forest Na' ve
Corrected value  © 94.3% 93.8%( 1.2%, 88'32/0
of signal r 727%  72.7%( 3.0%, 80.7%
amplitude 9 0.65 0.65( 0.05) 0.66
e 17.8%  18.0% ( 19.1%) 16.8%
p 88.1%  96.4% ( 11.9% 81.5%
Geometric r 95.9% 76.8% ( 27.9% 79.3%
features o 0.80 0.71( 0.21 0.69
e 9.5%  14.6% ( 40.7%, 15.8%
p 99.5%  99.0% ( 2.5% 98.2%
Radiometric r 99.4% 99.0% ( 7.8% 99.2%
features 9 0.98 0.98( 0.10 0.97
e 0.7% 1.1% (127.2%) 1.5%
Geometric + P 99.9%  99.0%( 6.3%, 98.7%
radiometric r 100.0%  99.6% ( 11.0%, 99.7%
features 9 0.98 0.98 ( 0.19 0.98
e 0.0% 0.8% (123.4%) 0.9%

Applying the k-Means, he combination ofgeometric and radiometrifeatures
shows a weaksilhouette coefficientand low precision compared to using solely
radiometric featureor the whole training datas€®Ceombined 0.4 < SGadiometric 0.7 and
Peombined22.4% < Rudiometric061.4%)(Tah 3). The weaker SC afising the combination of
geometric and radiometriieaturesis due to smalklevationdifferences of postharvest
growthand ground points.
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Table 3. Error assessment of cluster analysisMeans) of labeled training data using
subset 2(radiometric features) and subset 3 (combined geomainit radiometric
features).

Class Silhouette coefficient
Post Range Mean +
Harvest  Ground [min;max] Std
Growth
Subset 2 Cluster 1 (Ground) 57.1% 41.3% [0.01;0.85] 0.76 £0.14
Cluster 2 Post 61.4% 38.6% [0.01;0.81] 0.69+0.19
Harvest Growth)
Precision 61.4%
Recall 57.1%
Kappa 0.03
Error rate 47.5%
Subset 3 Cluster 1 (Ground) 47.6% 62.2% [-0.02;0.61] 0.43+0.15
Cluster 2 Post 52.4% 37.8% [-0.06;0.55] 0.36 £0.16
Harvest Growth
Precision 52.4%
Recall 63.8%
Kappa 0.15
Error rate 43.3 %

The benefit of combining geometric and radiometrideatures of a local
neighborhood to distinguish between ground aondtharvest growths deduced frm
comparing the results and the tendency of increasing precision of the applied classifiers.
The relevance of the local radiometric features is also reflected in the Gini Index
Weighting and the PCA (Fi®). Smallelevationdifferences of ground angbstharvest
growth lead to a lower impact of geometric features for classificatiorthéncase of
higher plants, the power of geometric features increases, which was also shown in others
studies of vegetation detecti¢andujar et al., 20136fle, 2014; Lumna et al, 2008)

4.4. Evaluationwith ReferencéData

The evaluationprocee@d on two levels to demonstrate thgotential of using
LIDAR data for classificationl) cell-wise comparison and comparison of calculated area
coverage ofLIDAR and of RGB image classification and?) calculated coverage of
LIDAR and RGB in relation to the calculated NDVIos within the footprint of
hyperspectral sensor of sample plot obele to varying spatial resolution and data
models of different datasets, coverage raster megpecomputed and compared.

4.4.3. Comparison with RGB Image Classification

The calculatedcoverageof postharvest growthof the sample plot varies from
3.6% to 19.2% for TLS based classificationwhile the RGB image analysis shows
covera@ of5.1%(Tab.4). The best match in coverage is reachedNlyy " v e aBday e s
tree induction(Fig. 8b-d), whereas thé&-Meansoverestimateshe postharvest growth
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coverageusing the combination ofgeometric and radiometric featureShe small
overestimation inN a = Bagesand tree induction results fronconsidering the local
neighborhoodand its &ect within thetransitionarea ofpostharvest growttandground
In comparison to the-MeansN a *~ v e aBd&ree enduction have detected the majority
of the postharvest growthpatcheswith higher precision(Tab 5). Applying only
radiometric featurek-Means achieves comparalpesults Fig. 8€) and acoverage value
of 3.6%.A cell-by-cell error assessment of LiDA&erived classes and classes derived by
image analysis yields high precisionof >77% (Tab. 5), considering only cells witla
label in LIDAR maps.The celtby-cell error assessment of LIDAR atite RGB image
can only be used to some extent due to misclassificatiotne RGB classification
processor dueto effects caused bgownscaling theesolutionof the RGB image The
calculated coverage per defined aire@ontrastprovides a good indication of the amount
of postharvest growth

The transferability of the derived classification rules to the whole field can be
seen inthe test dateof another sample plo20Om distan from the training dataA
comparison ofthe classified point cloud andé corresponding RGB imagé&ig. 9)
showsageementwith the allocation of smafpostharvest growttpatches

Fig. 8. Classified sample plot 1 (1m?): (a) RGB image; (b) classified by DT; (c) classified
by RF; (d) classified by Na’ ve Bayes analy
(e) clas#ied by k-Means using radiometric features and (f) classified by RGB.
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